Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Aug;66(4):1175–1182. doi: 10.1073/pnas.66.4.1175

ENERGY-COUPLING MECHANISMS IN MITOCHONDRIA: KINETIC, SPECTROSCOPIC, AND THERMODYNAMIC PROPERTIES OF AN ENERGY-TRANSDUCING FORM OF CYTOCHROME b*

B Chance 1, D F Wilson 1, P L Dutton 1, M Erecińska 1
PMCID: PMC335803  PMID: 5273968

Abstract

The primary event of coupled electron transfer at phosphorylation site II is identified with a modification in one of the two chemically distinct forms of cytochrome b, designated as the energy-transducing cytochrome bT. This modification is expressed through a change in the redox midpoint potential and by an increase in its reaction half time with cytochrome c1. In pigeon heart mitochondria cytochrome bT exhibits an absorption maximum at 564 nm and on this basis, it can be distinguished from Keilin's cytochrome b which exhibits an absorption maximum at 560 nm and serves as an electron carrier on the substrate side of cytochrome bT. Kinetic capability of cytochrome bT is evidenced by its rapid electron transfer and energization time of less than 200 msec, its thermodynamic capability—by a 280 mV potential span suitable for providing one of the two electron transfer reactions required in ATP formation. Two secondary events of coupled electron flow may be identified with a charge separation across the lipid structure of the permeability barrier and a change in water structure; both events result in an increased 1-anilino-8-naphthalene-sulfonic acid (ANS) response to the altered environment.

Full text

PDF
1175

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzi A., Chance B., Radda G. K., Lee C. P. A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc Natl Acad Sci U S A. 1969 Feb;62(2):612–619. doi: 10.1073/pnas.62.2.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brocklehurst J. R., Freedman R. B., Hancock D. J., Radda G. K. Membrane studies with polarity-dependent and excimer-forming fluorescent probes. Biochem J. 1970 Feb;116(4):721–731. doi: 10.1042/bj1160721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHANCE B. Spectra and reaction kinetics of respiratory pigments of homogenized and intact cells. Nature. 1952 Feb 9;169(4293):215–221. doi: 10.1038/169215a0. [DOI] [PubMed] [Google Scholar]
  4. CHANCE B. The kinetics and inhibition of cytochrome components of the succinic oxidase system. III. Cytochrome b. J Biol Chem. 1958 Nov;233(5):1223–1229. [PubMed] [Google Scholar]
  5. CHANCE B., WILLIAMS G. R. A method for the localization of sites for oxidative phosphorylation. Nature. 1955 Aug 6;176(4475):250–254. doi: 10.1038/176250a0. [DOI] [PubMed] [Google Scholar]
  6. Chance B., Erecińska M., Lee C. P. Localization of cytochromes in intact and fragmented mitochondrial membranes. Proc Natl Acad Sci U S A. 1970 Jul;66(3):928–935. doi: 10.1073/pnas.66.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chance B., Ernster L., Garland P. B., Lee C. P., Light P. A., Ohnishi T., Ragan C. I., Wong D. Flavoproteins of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A. 1967 May;57(5):1498–1505. doi: 10.1073/pnas.57.5.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chance B., Lee C. P., Mela L. Control and conservation of energy in the cytochrome chain. Fed Proc. 1967 Sep;26(5):1341–1354. [PubMed] [Google Scholar]
  9. Chance B., Schoener B. High and low energy states of cytochromes. I. In mitochondria. J Biol Chem. 1966 Oct 25;241(20):4567–4573. [PubMed] [Google Scholar]
  10. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968 May;37(2):345–369. doi: 10.1083/jcb.37.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee C. P., Ernster L., Chance B. Studies of the energy-transfer system of submitochondrial particles. Kinetic studies of the effect of oligomycin on the respiratory chain of EDTA particles. Eur J Biochem. 1969 Mar;8(2):153–163. doi: 10.1111/j.1432-1033.1969.tb00509.x. [DOI] [PubMed] [Google Scholar]
  12. Slater E. C., Lee C. P., Berden J. A., Wegdam H. J. High-energy forms of cytochrome b. Nature. 1970 Jun 27;226(5252):1248–1249. doi: 10.1038/2261248a0. [DOI] [PubMed] [Google Scholar]
  13. Wilson D. F., Dutton P. L. Energy dependent changes in the oxidation-reduction potential of cytochrome b. Biochem Biophys Res Commun. 1970 Apr 8;39(1):59–64. doi: 10.1016/0006-291x(70)90757-6. [DOI] [PubMed] [Google Scholar]
  14. Wilson D. F., Dutton P. L. The oxidation-reduction potentials of cytochromes a and a3 in intact rat liver mitochondria. Arch Biochem Biophys. 1970 Feb;136(2):583–585. doi: 10.1016/0003-9861(70)90233-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES