Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Aug;66(4):1190–1198. doi: 10.1073/pnas.66.4.1190

β-GALACTOSIDE TRANSPORT IN BACTERIAL MEMBRANE PREPARATIONS: ENERGY COUPLING VIA MEMBRANE-BOUND D-LACTIC DEHYDROGENASE

Eugene M Barnes Jr 1,*, H R Kaback 1,
PMCID: PMC335805  PMID: 4394455

Abstract

The transport of β-galactosides by isolated membrane preparations from Escherichia coli strains containing a functional y gene is markedly stimulated by the conversion of D-lactate to pyruvate. The addition of D-lactate to these membrane preparations produces a 19-fold increase in the initial rate of uptake and a 10-fold stimulation of the steady-state level of intramembranal lactose or thiomethylgalactoside. Succinate, DL-α-hydroxybutyrate, and L-lactate partially replace D-lactate, but are much less effective; ATP and P-enolpyruvate, in addition to a number of other metabolites and cofactors, do not stimulate lactose transport by the vesicles. Lactose uptake by the membrane preparations in the presence of D-lactate requires oxygen, and is blocked by electron transport inhibitors and proton conductors; however, uptake is not significantly inhibited by high concentrations of arsenate or oligomycin. Furthermore, the P-enolpyruvate-P-transferase system is not involved in β-galactoside transport by the E. coli membrane vesicles. The findings indicate that the β-galactoside uptake system is coupled to the membrane-bound D-lactic dehydrogenase via an electron transport chain but does not involve oxidative phosphorylation.

Full text

PDF
1190

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fox C. F., Carter J. R., Kennedy E. P. GENETIC CONTROL OF THE MEMBRANE PROTEIN COMPONENT OF THE LACTOSE TRANSPORT SYSTEM OF Escherichia coli. Proc Natl Acad Sci U S A. 1967 Mar;57(3):698–705. doi: 10.1073/pnas.57.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fox C. F., Kennedy E. P. Specific labeling and partial purification of the M protein, a component of the beta-galactoside transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1965 Sep;54(3):891–899. doi: 10.1073/pnas.54.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kaback H. R., Milner L. S. Relationship of a membrane-bound D-(-)-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations. Proc Natl Acad Sci U S A. 1970 Jul;66(3):1008–1015. doi: 10.1073/pnas.66.3.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kaback H. R. Regulation of sugar transport in isolated bacterial membrane preparations from Escherichia coli. Proc Natl Acad Sci U S A. 1969 Jul;63(3):724–731. doi: 10.1073/pnas.63.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaback H. R., Stadtman E. R. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc Natl Acad Sci U S A. 1966 Apr;55(4):920–927. doi: 10.1073/pnas.55.4.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaback H. R. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J Biol Chem. 1968 Jul 10;243(13):3711–3724. [PubMed] [Google Scholar]
  8. Kundig W., Kundig F. D., Anderson B., Roseman S. Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system. J Biol Chem. 1966 Jul 10;241(13):3243–3246. [PubMed] [Google Scholar]
  9. Pavlasova E., Harold F. M. Energy coupling in the transport of beta-galactosides by Escherichia coli: effect of proton conductors. J Bacteriol. 1969 Apr;98(1):198–204. doi: 10.1128/jb.98.1.198-204.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Scarborough G. A., Rumley M. K., Kennedy E. P. The function of adenosine 5'-triphosphate in the lactose transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1968 Jul;60(3):951–958. doi: 10.1073/pnas.60.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tanaka S., Fraenkel D. G., Lin E. C. The enzymatic lesion of strain MM-6, a pleiotropic carbohydrate-negative mutant of Escherichia coli. Biochem Biophys Res Commun. 1967 Apr 7;27(1):63–67. doi: 10.1016/s0006-291x(67)80040-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES