Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Jan;73(1):183–187. doi: 10.1073/pnas.73.1.183

Induction of human fibroblast proliferation by epidermal growth factor (EGF): enhancement by an EGF-binding arginine esterase and by ascorbate.

K J Lembach
PMCID: PMC335865  PMID: 1061114

Abstract

The effect of mouse epidermal growth factor (mEGF) and an mEGF-binding arginine esterase on the growth of cultured human fibroblasts has been studied. Physiological concentrations (10(-9)-10(-10) M) of the growth factor were found to stimulate DNA replication and cell proliferation in quiescent cultures, and the arginine esterase, which is normally associated with mEGF in vivo, was shown to enhance this growth effect synergistically. The cellular response to mEGF was dependent upon a low, growth-limiting concentration of serum in the extracellular medium. Ascorbic acid, which alone exhibited no growth-promoting effect, could partially replace this requirement, and was found to elicit a rapid and marked increase in proline hydroxylation. Quiescent cultures in serum-free medium containing ascorbic acid were stimulated by the combination of mEGF and the esterase in a manner comparable to that achieved with serum shift-up. The possible requirement of a collagen-containing extracellular matrix for the growth response to mEGF is discussed.

Full text

PDF
183

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armelin H. A. Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2702–2706. doi: 10.1073/pnas.70.9.2702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attardi D. G., Schlesinger M. J., Schlesinger S. Submaxillary gland of mouse: properties of a purified protein affecting muscle tissue in vitro. Science. 1967 Jun 2;156(3779):1253–1255. doi: 10.1126/science.156.3779.1253. [DOI] [PubMed] [Google Scholar]
  3. Bertsch S., Marks F. Effect of foetal calf serum and epidermal growth factor on DNA synthesis in explants of chick embryo epidermis. Nature. 1974 Oct 11;251(5475):517–519. doi: 10.1038/251517a0. [DOI] [PubMed] [Google Scholar]
  4. Carpenter G., Lembach K. J., Morrison M. M., Cohen S. Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem. 1975 Jun 10;250(11):4297–4304. [PubMed] [Google Scholar]
  5. Ceccarini C., Eagle H. Induction and reversal of contact inhibition of growth by pH modification. Nat New Biol. 1971 Oct 27;233(43):271–273. doi: 10.1038/newbio233271a0. [DOI] [PubMed] [Google Scholar]
  6. Cohen S., Carpenter G. Human epidermal growth factor: isolation and chemical and biological properties. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1317–1321. doi: 10.1073/pnas.72.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen S., Carpenter G., Lembach K. J. Interaction of epidermal growth factor (EGF) with cultured fibroblasts. Adv Metab Disord. 1975;8:265–284. doi: 10.1016/b978-0-12-027308-9.50024-x. [DOI] [PubMed] [Google Scholar]
  8. Culp L. A., Black P. H. Release of macromolecules from BALB-c mouse cell lines treated with chelating agents. Biochemistry. 1972 May 23;11(11):2161–2172. doi: 10.1021/bi00761a024. [DOI] [PubMed] [Google Scholar]
  9. Froehlich J. E., Rachmeler M. Inhibition of cell growth in the G1 phase by adenosine 3', 5'-cyclic monophosphate. J Cell Biol. 1974 Jan;60(1):249–257. doi: 10.1083/jcb.60.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gospodarowicz D., Moran J. S. Mitogenic effect of fibroblast growth factor on early passage cultures of human and murine fibroblasts. J Cell Biol. 1975 Aug;66(2):451–457. doi: 10.1083/jcb.66.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gospodarowicz D. Single step purification of ovine luteinizing hormone by affinity chromatography. J Biol Chem. 1972 Oct 25;247(20):6491–6498. [PubMed] [Google Scholar]
  12. Greene L. A., Tomita J. T., Varon S. Growth-stimulating activities of mouse submaxillary esteropeptidases on chick embryo fibroblasts in vitro. Exp Cell Res. 1971 Feb;64(2):387–395. doi: 10.1016/0014-4827(71)90092-9. [DOI] [PubMed] [Google Scholar]
  13. Grossman A., Lele K. P., Sheldon J., Schenkein I., Levy M. The effect of esteroproteases from mouse submaxillary gland on the growth of rat hepatoma cells in tissue culture. Exp Cell Res. 1969 Feb;54(2):260–263. doi: 10.1016/0014-4827(69)90246-8. [DOI] [PubMed] [Google Scholar]
  14. Hollenberg M. D., Cuatrecasas P. Epidermal growth factor: receptors in human fibroblasts and modulation of action by cholera toxin. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2964–2968. doi: 10.1073/pnas.70.10.2964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Raff E. C., Houck J. C. Migration and proliferation of diploid human fibroblasts following "wounding" of confluent monolayers. J Cell Physiol. 1969 Dec;74(3):235–244. doi: 10.1002/jcp.1040740304. [DOI] [PubMed] [Google Scholar]
  17. Ramaley P. B., Rosenbloom J. Inhibition of proline and lysine hydroxylation prevents normal extrusion of collagen by 3T6 fibroblasts in culture. FEBS Lett. 1971 Jun 2;15(1):59–64. doi: 10.1016/0014-5793(71)80079-0. [DOI] [PubMed] [Google Scholar]
  18. Savage C. R., Jr, Cohen S. Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. J Biol Chem. 1972 Dec 10;247(23):7609–7611. [PubMed] [Google Scholar]
  19. Stassen F. L., Cardinale G. J., Udenfriend S. Activation of prolyl hydroxylase in L-929 fibroblasts by ascorbic acid. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1090–1093. doi: 10.1073/pnas.70.4.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taylor J. M., Cohen S., Mitchell W. M. Epidermal growth factor: high and low molecular weight forms. Proc Natl Acad Sci U S A. 1970 Sep;67(1):164–171. doi: 10.1073/pnas.67.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taylor J. M., Mitchell W. M., Cohen S. Characterization of the binding protein for epidermal growth factor. J Biol Chem. 1974 Apr 10;249(7):2188–2194. [PubMed] [Google Scholar]
  22. Taylor J. M., Mitchell W. M., Cohen S. Characterization of the high molecular weight form of epidermal growth factor. J Biol Chem. 1974 May 25;249(10):3198–3203. [PubMed] [Google Scholar]
  23. Varon S., Nomura J., Shooter E. M. The isolation of the mouse nerve growth factor protein in a high molecular weight form. Biochemistry. 1967 Jul;6(7):2202–2209. doi: 10.1021/bi00859a043. [DOI] [PubMed] [Google Scholar]
  24. Yaoi Y., Kanaseki T. Role of microexudate carpet in cell division. Nature. 1972 Jun 2;237(5353):283–285. doi: 10.1038/237283a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES