Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Feb;73(2):420–422. doi: 10.1073/pnas.73.2.420

Glutathione and gamma-glutamyl cycle enzymes in crypt and villus tip cells of rat jejunal mucosa.

J S Cornell, A Meister
PMCID: PMC335920  PMID: 1755

Abstract

Villus tip cells and crypt cells of rat jejunal mucosa were separated by the planning procedure of Imondi et al. and were studied with respect to their activities of the enzymes of the gamma-glutamyl cycle and glutathione content. The villus tip cells exhibit much higher gamma-glutamyl transpeptidase activities than do the crypt cells: thus, gamma-glutamyl trnaspeptidase appears to be a villus-specific enzyme. gamma-Glutamyl cyclotransferase and the enzymes required for glutathione synthesis are not specifically localized to either the crypt or villus tip cells but are present in both. The crypt cells have a high concentration of glutathione (4-5 mM) comparable to the levels found in liver and kidney; in contrast, the villus tip cells have much lower concentrations. On fasting, the glutathione concentration decreased markedly in both villus tip and crypt cells; feeding of protein, but not of sucrose, led to increased glutathione concentrations. The migration of cells from the undifferentiated crypt cell region to the villus tip is associated with structural and biochemical changes that equip the cell for its mature functional activities, which include transport. The present findings indicate that such cellular differentiation and migration is associated with a marked increase in gamma-glutamyl transpeptidase activity and in the utilization of glutathione.

Full text

PDF
420

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen M. I., Gartner L. M., Blumenfeld O. O., Arias I. M. Gamma glutamyl transpeptidase: measurement and development in guinea pig small intestine. Pediatr Res. 1969 Jan;3(1):5–10. doi: 10.1203/00006450-196901000-00001. [DOI] [PubMed] [Google Scholar]
  2. Fortin-Magana R., Hurwitz R., Herbst J. J., Kretchmer N. Intestinal enzymes: indicators of proliferation and differentiation in the jejunum. Science. 1970 Mar 20;167(3925):1627–1628. doi: 10.1126/science.167.3925.1627. [DOI] [PubMed] [Google Scholar]
  3. Greenberg E., Wollaeger E. E., Fleisher G. A., Engstrom G. W. Demonstration of gamma-glutamyl transpeptidase activity in human jejunal mucosa. Clin Chim Acta. 1967 Apr;16(1):79–89. doi: 10.1016/0009-8981(67)90272-0. [DOI] [PubMed] [Google Scholar]
  4. Harrison D. D., Webster H. L. The preparation of isolated intestinal crypt cells. Exp Cell Res. 1969 May;55(2):257–260. doi: 10.1016/0014-4827(69)90489-3. [DOI] [PubMed] [Google Scholar]
  5. Hülsmann W. C., van den Berg J. W., de Jonge H. R. Isolation of intestinal mucosa cells. Methods Enzymol. 1974;32:665–673. doi: 10.1016/0076-6879(74)32070-8. [DOI] [PubMed] [Google Scholar]
  6. Imondi A. R., Balis M. E., Lipkin M. Changes in enzyme levels accompanying differentiation of intestinal epithelial cells. Exp Cell Res. 1969 Dec;58(2):323–330. doi: 10.1016/0014-4827(69)90512-6. [DOI] [PubMed] [Google Scholar]
  7. Isselbacher K. J. The intestinal cell surface: some properties of normal, undifferentiated, and malignant cells. Ann Intern Med. 1974 Nov;81(5):681–686. doi: 10.7326/0003-4819-81-5-681. [DOI] [PubMed] [Google Scholar]
  8. Kim Y. S., McCarthy D. M., Lane W., Fong W. Alterations in the levels of peptide hydrolases and other enzymes in brush-border and soluble fractions of rat small intestinal mucosa during starvation and refeeding. Biochim Biophys Acta. 1973 Sep 15;321(1):262–273. doi: 10.1016/0005-2744(73)90081-8. [DOI] [PubMed] [Google Scholar]
  9. Kim Y. S., Perdomo J., Ochoa P., Isaacs R. A. Regional and cellular localization of glycosyltransferases in rat small intestine. Changes in enzymes with differentiation of intestinal epithelial cells. Biochim Biophys Acta. 1975 May 23;391(1):39–50. doi: 10.1016/0005-2744(75)90150-3. [DOI] [PubMed] [Google Scholar]
  10. Klemperer H. G., Haynes G. R. Thymidine kinase in rat liver during development. Biochem J. 1968 Jul;108(4):541–546. doi: 10.1042/bj1080541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LEBLOND C. P., MESSIER B. Renewal of chief cells and goblet cells in the small intestine as shown by radioautography after injection of thymidine-H3 into mice. Anat Rec. 1958 Nov;132(3):247–259. doi: 10.1002/ar.1091320303. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. LaMont J. T., Weiser M. M., Isselbacher K. J. Cell surface glycosyltransferase activity in normal and neoplastic intestinal epithelium of the rat. Cancer Res. 1974 Dec;34(12):3225–3228. [PubMed] [Google Scholar]
  14. Moog F., Etzler M. E., Grey R. D. The differentiation of alkaline phosphatase in the small intestine. Ann N Y Acad Sci. 1969 Oct 14;166(2):447–465. doi: 10.1111/j.1749-6632.1969.tb46414.x. [DOI] [PubMed] [Google Scholar]
  15. Nordström C., Dahlqvist A., Josefsson L. Quantitative determination of enzymes in different parts of the villi and crypts of rat small intestine. Comparison of alkaline phosphatase, disaccharidases and dipepeptidases. J Histochem Cytochem. 1967 Dec;15(12):713–721. doi: 10.1177/15.12.713. [DOI] [PubMed] [Google Scholar]
  16. Ono K. The localization of alkaline phosphatase activity in the rat small intestinal epithelium after fat and protein feeding. Acta Histochem. 1974;51(1):124–137. [PubMed] [Google Scholar]
  17. Orlowski M., Richman P. G., Meister A. Isolation and properties of gamma-L-glutamylcyclotransferase from human brain. Biochemistry. 1969 Mar;8(3):1048–1055. doi: 10.1021/bi00831a036. [DOI] [PubMed] [Google Scholar]
  18. Ross L. L., Barber L., Tate S. S., Meister A. Enzymes of the gamma-glutamyl cycle in the ciliary body and lens. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2211–2214. doi: 10.1073/pnas.70.8.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salser J. S., Balis M. E. Distribution and regulation of deoxythymidine kinase activity in differentiating cells of mammalian intestines. Cancer Res. 1973 Aug;33(8):1889–1897. [PubMed] [Google Scholar]
  20. Schneider R., Troesch V., Hadorn B. On the cellular distribution of sucrase and enterokinase in different populations of rat intestinal epithelial cells isolated by a vibration method. Biol Gastroenterol (Paris) 1975 Jan-Feb;8(1):11–20. [PubMed] [Google Scholar]
  21. Sjöstrand F. S. A simple and rapid method to prepare dispersions of columnar epithelial cells from the rat intestine. J Ultrastruct Res. 1968 Mar;22(5):424–442. doi: 10.1016/s0022-5320(68)90032-4. [DOI] [PubMed] [Google Scholar]
  22. Tate S. S., Meister A. Identity of maleate-stimulated glutaminase with gamma-glutamyl transpeptidase in rat kidney. J Biol Chem. 1975 Jun 25;250(12):4619–4627. [PubMed] [Google Scholar]
  23. Tate S. S., Meister A. Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem. 1974 Dec 10;249(23):7593–7602. [PubMed] [Google Scholar]
  24. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  25. Troncale F., Hertz R., Lipkin M. Nucleic acid metabolism in proliferating and differentiating colonic cells of man and in neoplastic lesions of the colon. Cancer Res. 1971 Apr;31(4):463–467. [PubMed] [Google Scholar]
  26. Webster H. L., Harrison D. D. Enzymic activities during the transformation of crypt to columnar intestinal cells. Exp Cell Res. 1969 Aug;56(2):245–253. doi: 10.1016/0014-4827(69)90009-3. [DOI] [PubMed] [Google Scholar]
  27. Weiser M. M. Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem. 1973 Apr 10;248(7):2536–2541. [PubMed] [Google Scholar]
  28. Weiser M. M. Intestinal epithelial cell surface membrane glycoprotein synthesis. II. Glycosyltransferases and endogenous acceptors of the undifferentiated cell surface membrane. J Biol Chem. 1973 Apr 10;248(7):2542–2548. [PubMed] [Google Scholar]
  29. Wellner V. P., Sekura R., Meister A., Larsson A. Glutathione synthetase deficiency, an inborn error of metabolism involving the gamma-glutamyl cycle in patients with 5-oxoprolinuria (pyroglutamic aciduria). Proc Natl Acad Sci U S A. 1974 Jun;71(6):2505–2509. doi: 10.1073/pnas.71.6.2505. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES