Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Feb;73(2):577–581. doi: 10.1073/pnas.73.2.577

Mechanisms of adhesion among cells from neural tissues of the chick embryo.

U Rutishauser, J P Thiery, R Brackenbury, B A Sela, G M Edelman
PMCID: PMC335953  PMID: 54921

Abstract

In order to analyze the molecular mechanisms of cell adhesion during development, proteins on the surface of chick embryonic neural cells were compared with proteins released after placing these cells in culture. One of the components released into culture, F1 (molecular weight, Mr 140,000), was derived by proteolytic cleavage of a cell surface precursor with a molecular weight of at least 240,000. Another protein, F2, recovered from culture as a dimer (Mr 1110,000), appeared to be a product of limited proteolytic cleavage of F1. Cells in retinal tissue possessed a surface protein of Mr 150,000 that also appeared to be derived by limited proteolytic cleavage of the cell surface precursor. Antibodies to F2 interacted with determinants on the cell surface protein of Mr 150,000, and specifically prevented homologous and heterologous binding among dissociated retinal and brain cells. In contrast, antibodies to F1 failed to prevent cell-cell adhesion and did not crossreact with F2. These data suggest that the cell surface protein of Mr 150,000 generated by limited proteolysis is involved in adhesion of both retinal and brain cells. Cell-cell binding of both retinal and brain cells varied as a function of developmental age and brain cells acquired their binding properties at an earlier time than retinal cells. Similar results were obtained in experiments on the binding of retinal and brain cells of different ages to nylon fibres coated with antibodies to F2. The results of the molecular and cellular experiments are incorporated in a model for cell adhesion invoking both proteolytic activation and modulation of cell surface ligands.

Full text

PDF
577

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K. Analytical gel chromatography of proteins. Adv Protein Chem. 1970;24:343–446. doi: 10.1016/s0065-3233(08)60245-4. [DOI] [PubMed] [Google Scholar]
  2. Balsamo J., Lilien J. Functional identification of three components which mediate tissue-type specific embryonic cell adhesion. Nature. 1974 Oct 11;251(5475):522–524. doi: 10.1038/251522a0. [DOI] [PubMed] [Google Scholar]
  3. Cebra J. J., Goldstein G. Chromatographic purification of tetramethylrhodamine-immune globulin conjugates and their use in the cellular localization of rabbit gamma-globulin polypeptide chains. J Immunol. 1965 Aug;95(2):230–245. [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. Edelman G. M., Yahara I., Wang J. L. Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci U S A. 1973 May;70(5):1442–1446. doi: 10.1073/pnas.70.5.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henning R., Milner R. J., Reske K., Cunningham B. A., Edelman G. M. Subunit structure, cell surface orientation, and partial amino-acid sequences of murine histocompatibility antigens. Proc Natl Acad Sci U S A. 1976 Jan;73(1):118–122. doi: 10.1073/pnas.73.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hunt R. C., Brown J. C. Identification of a high molecular weight trans-membrane protein in mouse L cells. J Mol Biol. 1975 Oct 5;97(4):413–422. doi: 10.1016/s0022-2836(75)80051-9. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  10. Rutishauser U., Sachs L. Receptor mobility and the binding of cells to lectin-coated fibers. J Cell Biol. 1975 Jul;66(1):76–85. doi: 10.1083/jcb.66.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rutishauser U., Sachs L. Receptor mobility and the mechanism of cell-cell binding induced by concanavalin A. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2456–2460. doi: 10.1073/pnas.71.6.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sela B. A., Lis H., Sharon N., Sachs L. Isolectins from wax bean with differential agglutination of normal and transformed mammalian cells. Biochim Biophys Acta. 1973 May 17;310(1):273–277. doi: 10.1016/0005-2795(73)90030-5. [DOI] [PubMed] [Google Scholar]
  13. Steinberg M. S. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J Exp Zool. 1970 Apr;173(4):395–433. doi: 10.1002/jez.1401730406. [DOI] [PubMed] [Google Scholar]
  14. Stephens R. E. High-resolution preparative SDS-polyacrylamide gel electrophoresis: fluorescent visualization and electrophoretic elution-concentration of protein bands. Anal Biochem. 1975 May 12;65(1-2):369–379. doi: 10.1016/0003-2697(75)90521-7. [DOI] [PubMed] [Google Scholar]
  15. Yamada K. M., Yamada S. S., Pastan I. The major cell surface glycoprotein of chick embryo fibroblasts is an agglutinin. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3158–3162. doi: 10.1073/pnas.72.8.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES