Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Mar;73(3):804–808. doi: 10.1073/pnas.73.3.804

Sequence-specific recognition of double helical nucleic acids by proteins.

N C Seeman, J M Rosenberg, A Rich
PMCID: PMC336007  PMID: 1062791

Abstract

The base pairs in double helical nucleic acids have been compared to see how they can be recognized by proteins. We conclude that a single hydrogen bond is inadequate for uniquely identifying any particular base pair, as this leads to numerous degeneracies. However, using two hydrogen bonds, fidelity of base pair recognition may be achieved. We propose specific amino-acid side chain interactions involving two hydrogen bonds as a component of the recognition system for base pairs. In the major groove we suggest that asparagine or glutamine binds to adenine of the base pair or arginine binds to guanine. In the minor groove, we suggest an interaction between asparagine or glutamine with guanine of the base pair. We also discuss the role that ions and other amino-acid side chains may play in recognition interactions.

Full text

PDF
804

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler K., Beyreuther K., Fanning E., Geisler N., Gronenborn B., Klemm A., Müller-Hill B., Pfahl M., Schmitz A. How lac repressor binds to DNA. Nature. 1972 Jun 9;237(5354):322–327. doi: 10.1038/237322a0. [DOI] [PubMed] [Google Scholar]
  2. Day R. O., Seeman N. C., Rosenberg J. M., Rich A. A crystalline fragment of the double helix: the structure of the dinucleoside phosphate guanylyl-3',5'-cytidine. Proc Natl Acad Sci U S A. 1973 Mar;70(3):849–853. doi: 10.1073/pnas.70.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Enea V., Zinder N. D. Guanidinium-CsCl density gradients for isopycnic analysis of nucleic acids. Science. 1975 Nov 7;190(4214):584–586. doi: 10.1126/science.1188358. [DOI] [PubMed] [Google Scholar]
  4. FELSENFELD G., RICH A. Studies on the formation of two- and three-stranded polyribonucleotides. Biochim Biophys Acta. 1957 Dec;26(3):457–468. doi: 10.1016/0006-3002(57)90091-4. [DOI] [PubMed] [Google Scholar]
  5. Gurskii G. V., Tumanian V. G., Zasedatelev A. S., Zhuze A. L., Grokhovskii S. L., Gottikh B. P. Kod, upravliaiushchii spetsificheskim sviazyvaniem reguliatornykh belkov s DNK, i struktura stereospetsifichnykh uc astkov reguliatornykh belkov. Mol Biol (Mosk) 1975 Sep-Oct;9(5):635–651. [PubMed] [Google Scholar]
  6. Jain S. C., Sobell H. M. Stereochemistry of actinomycin binding to DNA. I. Refinement and further structural details of the actinomycin-deoxyguanosine crystalline complex. J Mol Biol. 1972 Jul 14;68(1):1–20. doi: 10.1016/0022-2836(72)90258-6. [DOI] [PubMed] [Google Scholar]
  7. Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  8. Kim S. H., Sussman J. L., Suddath F. L., Quigley G. J., McPherson A., Wang A. H., Seeman N. C., RICH A. The general structure of transfer RNA molecules. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4970–4974. doi: 10.1073/pnas.71.12.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ladner J. E., Jack A., Robertus J. D., Brown R. S., Rhodes D., Clark B. F., Klug A. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4414–4418. doi: 10.1073/pnas.72.11.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leng M., Felsenfeld G. The preferential interactions of polylysine and polyarginine with specific base sequences in DNA. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1325–1332. doi: 10.1073/pnas.56.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. O'Brien E. J. Crystal structures of two complexes containing guanine and cytosine derivatives. Acta Crystallogr. 1967 Jul 10;23(1):92–106. doi: 10.1107/s0365110x67002191. [DOI] [PubMed] [Google Scholar]
  12. Quigley G. J., Seeman N. C., Wang A. H., Suddath F. L., Rich A. Yeast phenylalanine transfer RNA: atomic coordinates and torsion angles. Nucleic Acids Res. 1975 Dec;2(12):2329–2341. doi: 10.1093/nar/2.12.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  14. Rosenberg J. M., Seeman N. C., Kim J. J., Suddath F. L., Nicholas H. B., Rich A. Double helix at atomic resolution. Nature. 1973 May 18;243(5403):150–154. doi: 10.1038/243150a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES