Abstract
Crithidia oncopelti, a parasitic trypanosomatid protozoan of insects, normally contains intracellular symbiotic bacteria. As shown earlier, the protozoa can be rid of their endosymbiotes by chloramphenicol, producing a symbiote-free cell line. Here surface-membrane carbohydrate ligands of the symbiote-containing and symbiote-free strains were compared by lectin-mediated agglutination, lectin-ultrastructure localization. [3H] lectin-binding, and fluorescent lectin staining. Symbiote-free organisms consistently had 3-fold higher agglutination titers than symbiote-containing cells with concanavalin A. Conversely, symbiote-containing flagellates had 2- to 3-fold greater agglutination titers with a fucose-binding lectin than symbiote-free organisms. Ultrastructure results showed that more of concanavalin A-horseradish peroxidase-diaminobenzidine reaction product was present at the surface of symbiote-free than on symbiote-containing cells. Treatment with [3H]concanavalin A revealed that surface membrane sites available per cell for [3H]lectin-binding ranged from 6.2 to 7.4 x 10(4) and from 24 to 27 x 10(4) for symbiote-containing and symbiote-free organisms, respectively, i.e., the mean binding level of the latter for the lectin was 3.5 times greater than that of the former. Moreover, symbiote-free cells fluoresced more than symbiote-containing organisms after staining with fluorescein-labeled concanavalin A. Apparently, the prokaryotic endosymbiotes somehow alter the quantity of saccharide ligands in the C. oncopelti surface membrane.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alves M. J., Colli W. Agglutination of Trypanosoma cruzi by concanavalin A. J Protozool. 1974 Oct;21(4):575–578. doi: 10.1111/j.1550-7408.1974.tb03704.x. [DOI] [PubMed] [Google Scholar]
- Bernhard W., Avrameas S. Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A. Exp Cell Res. 1971 Jan;64(1):232–236. doi: 10.1016/0014-4827(71)90217-5. [DOI] [PubMed] [Google Scholar]
- Burger M. M. A difference in the architecture of the surface membrane of normal and virally transformed cells. Proc Natl Acad Sci U S A. 1969 Mar;62(3):994–1001. doi: 10.1073/pnas.62.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang K. P., Chang C. S., Sassa S. Heme biosynthesis in bacterium-protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2979–2983. doi: 10.1073/pnas.72.8.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang K. P. Haematophagous insect and haemoflagellate as hosts for prokaryotic endosymbionts. Symp Soc Exp Biol. 1975;(29):407–428. [PubMed] [Google Scholar]
- Chang K. P. Reduced growth of Blastocrithidia culicis and Crithidia oncopelti freed of intracellular symbiotes by chloramphenicol. J Protozool. 1975 May;22(2):271–276. doi: 10.1111/j.1550-7408.1975.tb05866.x. [DOI] [PubMed] [Google Scholar]
- Chang K. P., Trager W. Nutritional significance of symbiotic bacteria in two species of hemoflagellates. Science. 1974 Feb 8;183(4124):531–532. doi: 10.1126/science.183.4124.531. [DOI] [PubMed] [Google Scholar]
- Chang K. P. Ultrastructure of symbiotic bacteria in normal and antibiotic-treated Blastocrithidia culicis and Crithidia oncopelti. J Protozool. 1974 Nov;21(5):699–707. doi: 10.1111/j.1550-7408.1974.tb03733.x. [DOI] [PubMed] [Google Scholar]
- Collard J. G., Temmink J. H. Differences in density of Concanavalin A-binding sites due to differences in surface morphology of suspended normal and transformed 3T3 fibroblasts. J Cell Sci. 1975 Oct;19(1):21–32. doi: 10.1242/jcs.19.1.21. [DOI] [PubMed] [Google Scholar]
- Drlica K. A., Kado C. I. Crown gall tumors: are bacterial nucleic acids involved? Bacteriol Rev. 1975 Sep;39(3):186–196. doi: 10.1128/br.39.3.186-196.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dwyer D. M. Lectin binding saccharides on a parasitic protozoan. Science. 1974 Apr 26;184(4135):471–473. doi: 10.1126/science.184.4135.471. [DOI] [PubMed] [Google Scholar]
- Gibson D. A., Marquardt M. D., Gordon J. A. Cell rigidity: Effect on concanavalin A-mediated agglutinability of fibroblasts after fixation. Science. 1975 Jul 4;189(4196):45–46. doi: 10.1126/science.166434. [DOI] [PubMed] [Google Scholar]
- Kaneko I., Hayatsu H., Ukita T. A quantitative assay for concanavalin A- and Ricinus communis agglutinin-mediated agglutinations of rat ascites hepatoma cells. Relationship between concanavalin A binding and cell agglutination. Biochim Biophys Acta. 1975 May 5;392(1):131–140. doi: 10.1016/0304-4165(75)90173-7. [DOI] [PubMed] [Google Scholar]
- Knopf U. C. On a eukaryotic cell-transformation by a bacterium. Subcell Biochem. 1974 Mar;3(1):39–48. [PubMed] [Google Scholar]
- MORGAN J. F., MORTON H. J., PARKER R. C. Nutrition of animal cells in tissue culture; initial studies on a synthetic medium. Proc Soc Exp Biol Med. 1950 Jan;73(1):1–8. doi: 10.3181/00379727-73-17557. [DOI] [PubMed] [Google Scholar]
- Marquardt M. D., Gordon J. A. Glutaraldehyde fixation and the mechanism of erythroycte agglutination by concanavalin A and soybean agglutinin. Exp Cell Res. 1975 Mar 15;91(2):310–316. doi: 10.1016/0014-4827(75)90109-3. [DOI] [PubMed] [Google Scholar]
- Martin B. J., Spicer S. S. Letter: Concanavalin A-iron dextran technique for staining cell surface mucosubstances. J Histochem Cytochem. 1974 Mar;22(3):206–207. doi: 10.1177/22.3.206. [DOI] [PubMed] [Google Scholar]
- McCracken R. O., Lumsden R. D. Structure and function of parasite surface membranes. II. Concanavalin A adsorption by the cestode Hymenolepis diminuta and its effect on transport. Comp Biochem Physiol B. 1975 Oct 15;52(2):331–337. doi: 10.1016/0305-0491(75)90074-7. [DOI] [PubMed] [Google Scholar]
- Mundim M. H., Roitman I., Hermans M. A., Kitajima E. W. Simple nutrition of Crithidia deanei, a reduviid trypanosomatid with an endosymbiont. J Protozool. 1974 Oct;21(4):518–521. doi: 10.1111/j.1550-7408.1974.tb03691.x. [DOI] [PubMed] [Google Scholar]
- NEWTON B. A., HORNE R. W. Intracellular structures in Strigomonas oncopelti. I. Cytoplasmic structures containing ribonucleoprotein. Exp Cell Res. 1957 Dec;13(3):563–574. doi: 10.1016/0014-4827(57)90086-1. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L., Lacorbiere M. Cell contact-dependent increase in membrane D-galactopyranosyl-like residues on normal, but not virus- or spontaneously-transformed, murine fibroblasts. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1672–1676. doi: 10.1073/pnas.70.6.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolson G. L., Lacorbiere M., Eckhart W. Qualitative and quantitative interactions of lectins with untreated and neuraminidase-treated normal, wild-type, and temperature-sensitive polyoma-transformed fibroblasts. Biochemistry. 1975 Jan 14;14(1):172–179. doi: 10.1021/bi00672a029. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. Neuraminidase "unmasking" and failure of trypsin to "unmask" -D-galactose-like sites on erythrocyte, lymphoma, and normal and virus-transformed fibroblast cell membranes. J Natl Cancer Inst. 1973 Jun;50(6):1443–1451. doi: 10.1093/jnci/50.6.1443. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
- Preer J. R., Jr, Preer L. B., Jurand A. Kappa and other endosymbionts in Paramecium aurelia. Bacteriol Rev. 1974 Jun;38(2):113–163. doi: 10.1128/br.38.2.113-163.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapin A. M., Burger M. M. Tumor cell surfaces: general alterations detected by agglutinins. Adv Cancer Res. 1974;20:1–91. doi: 10.1016/s0065-230x(08)60108-6. [DOI] [PubMed] [Google Scholar]
- Sachs L. Regulation of membrane changes, differentiation, and malignancy in carcinogenesis. Harvey Lect. 1974;68:1–35. [PubMed] [Google Scholar]
- Spencer R., Cross G. A. Purification and properties of nucleic acids from an unusual cytoplasmic organelle in the flagellate protozoan Crithidia oncopelti. Biochim Biophys Acta. 1975 May 1;390(2):141–154. doi: 10.1016/0005-2787(75)90337-8. [DOI] [PubMed] [Google Scholar]
- Tuan R. S., Chang K. P. Isolation of intracellular symbiotes by immune lysis of flagellate protozoa and characterization of their DNA. J Cell Biol. 1975 May;65(2):309–323. doi: 10.1083/jcb.65.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss E. Growth and physiology of rickettsiae. Bacteriol Rev. 1973 Sep;37(3):259–283. doi: 10.1128/br.37.3.259-283.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van den Berg K. J., Betel I. Increased transport of 2-aminoisobutyric acid in rat lymphocytes stimulated with concanavalin A. Exp Cell Res. 1973 Jan;76(1):63–72. doi: 10.1016/0014-4827(73)90419-9. [DOI] [PubMed] [Google Scholar]


