Abstract
Radioactive triiodothyronine reaching the rat brain after intravenous administration is rapidly and selectively taken up in the nerve ending fraction. A concentration gradient of radioactivity from brain cytosol to synaptosomes is observed at 5 min, increases linearly over the first hour, and is maintained for at least 10 hr. Radioactivity in the synaptosomes is due to triiodothyronine (90%) plus a single unidentified metabolite (10%). Approximately 85% of the synaptosomal radioactivity is released by osmotic disruption of the particles. The process of selective uptake, concentration, and retention of triiodothyronine in nerve terminals of the rat brain may be related to the sympathomimetic and behavior-altering effects of the thyroid hormones.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoki V. S., Wilson W. R., Theilen E. O. Studies of the reputed augmentation of the cardiovascular effects of catecholamines in patients with spontaneous hyperthyroidism. J Pharmacol Exp Ther. 1972 May;181(2):362–368. [PubMed] [Google Scholar]
- Beley A., Rochette L., Bralet J. Influence du traitement par la thyroxine et le propylthiouracile sur le taux de renouvellement de la noradrénaline dans huit organes périphériques du rat. Arch Int Physiol Biochim. 1973 May;81(2):287–298. doi: 10.3109/13813457309074459. [DOI] [PubMed] [Google Scholar]
- Christensen N. J. Plasma noradrenaline and adrenaline in patients with thyrotoxicosis and myxoedema. Clin Sci Mol Med. 1973 Aug;45(2):163–171. doi: 10.1042/cs0450163. [DOI] [PubMed] [Google Scholar]
- Colburn R. W., Goodwin F. K., Murphy D. L., Bunney W. E., Jr, Davis J. M. Quantitative studies of norepinephrine uptake by synaptosomes. Biochem Pharmacol. 1968 Jun;17(6):957–964. doi: 10.1016/0006-2952(68)90354-7. [DOI] [PubMed] [Google Scholar]
- Dratman M. B. On the mechanism of action of thyroxin, an amino acid analog of tyrosine. J Theor Biol. 1974 Jul;46(1):255–270. doi: 10.1016/0022-5193(74)90151-9. [DOI] [PubMed] [Google Scholar]
- Klawans H. L., Jr, Shenker D. M. Observations on the dopaminergic nature of hyperthyroid chorea. J Neural Transm. 1972;33(1):73–81. doi: 10.1007/BF01244729. [DOI] [PubMed] [Google Scholar]
- Kopin I. J. False adrenergic transmitters. Annu Rev Pharmacol. 1968;8:377–394. doi: 10.1146/annurev.pa.08.040168.002113. [DOI] [PubMed] [Google Scholar]
- Landsberg L., Axelrod J. Influence of pituitary, thyroid, and adrenal hormones on norepinephrine turnover and metabolism in the rat heart. Circ Res. 1968 May;22(5):559–571. doi: 10.1161/01.res.22.5.559. [DOI] [PubMed] [Google Scholar]
- Spaulding S. W., Noth R. H. Thyroid-catecholamine interactions. Med Clin North Am. 1975 Sep;59(5):1123–1131. doi: 10.1016/s0025-7125(16)31962-9. [DOI] [PubMed] [Google Scholar]
- Stoffer S. S., Jiang N. S., Gorman C. A., Pikler G. M. Plasma catecholamines in hypothyroidism and hyperthyroidism. J Clin Endocrinol Metab. 1973 Mar;36(3):587–589. doi: 10.1210/jcem-36-3-587. [DOI] [PubMed] [Google Scholar]
- Whittaker V. P., Michaelson I. A., Kirkland R. J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem J. 1964 Feb;90(2):293–303. doi: 10.1042/bj0900293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker V. P. The application of subcellular fractionation techniques to the study of brain function. Prog Biophys Mol Biol. 1965;15:39–96. doi: 10.1016/0079-6107(65)90004-0. [DOI] [PubMed] [Google Scholar]
- el Shahawy M., Stefadouros M. A., Carr A. A., Conti R. Direct effect of thyroid hormone on intracardiac conduction in acute and chronic hyperthyroid animals. Cardiovasc Res. 1975 Jul;9(4):524–531. doi: 10.1093/cvr/9.4.524. [DOI] [PubMed] [Google Scholar]