Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Sep;75(9):4078–4081. doi: 10.1073/pnas.75.9.4078

Coordination environment and fluoride binding of type 2 copper in the blue copper oxidase ceruloplasmin.

J H Dawson, D M Dooley, H B Gray
PMCID: PMC336053  PMID: 212731

Abstract

The electron paramagnetic resonance (EPR) spectra of the blue copper oxidase ceruloplasmin [ferroxidase, iron (II):oxygen oxidoreductase, EC 1.16.3.1] and of a derivative having the type I (blue) copper centers reversibly bleached are reported. The EPR spectrum of bleached ceruloplasmin has a seven-line superhyperfine structure in the g : formula: (see text) region that is attributed to the presence of three nitrogen-donor type 2 copper ligands. The EPR data suggest further that the type 2 copper in ceruloplasmin possesses a tetragonal coordination gometry. In the presence of varying amounts of fluoride, superhyperfine splitting patterns in the g : formula: (see text) region of both ceruloplasmin derivatives indicate that a maximum of two fluorides may be bound to the type 2 copper.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andréasson L. E., Vänngård T. Evidence of a specific copper(II) in human ceruloplasmin as a binding site for inhibitory anions. Biochim Biophys Acta. 1970 Feb 17;200(2):247–257. doi: 10.1016/0005-2795(70)90168-6. [DOI] [PubMed] [Google Scholar]
  2. Bereman R. D., Kosman D. J. Stereoelectronic properties of metalloenzymes. 5. Identification and assignment of ligand hyperfine splittings in the electron spin resonance spectrum of galactose oxidase. J Am Chem Soc. 1977 Oct 26;99(22):7322–7325. doi: 10.1021/ja00464a036. [DOI] [PubMed] [Google Scholar]
  3. Brändén R., Malmström B. G., Vänngård T. The effect of fluoride on the spectral and catalytic properties of the three copper-containing oxidases. Eur J Biochem. 1973 Jul 2;36(1):195–200. doi: 10.1111/j.1432-1033.1973.tb02901.x. [DOI] [PubMed] [Google Scholar]
  4. Byers W., Curzon G., Garbett K., Speyer B. E., Young S. N., Williams R. J. Anion-binding and the state of copper in caeruloplasmin. Biochim Biophys Acta. 1973 May 17;310(1):38–50. doi: 10.1016/0005-2795(73)90006-8. [DOI] [PubMed] [Google Scholar]
  5. Dawson C. R., Strothkamp K. G., Krul K. G. Ascorbate oxidase and related copper proteins. Ann N Y Acad Sci. 1975 Sep 30;258:209–220. doi: 10.1111/j.1749-6632.1975.tb29281.x. [DOI] [PubMed] [Google Scholar]
  6. Deinum J., Vänngård T. The stoichiometry of the paramagnetic copper and the oxidation-reduction potentials of type I copper in human ceruloplasmin. Biochim Biophys Acta. 1973 Jun 15;310(2):321–330. doi: 10.1016/0005-2795(73)90112-8. [DOI] [PubMed] [Google Scholar]
  7. Falk K. E., Reinhammar B. Visible and near-infrared circular dichroism of some blue copper proteins. Biochim Biophys Acta. 1972 Nov 28;285(1):84–90. doi: 10.1016/0005-2795(72)90182-1. [DOI] [PubMed] [Google Scholar]
  8. Frieden E., Hsieh H. S. The biological role of ceruloplasmin and its oxidase activity. Adv Exp Med Biol. 1976;74:505–529. doi: 10.1007/978-1-4684-3270-1_43. [DOI] [PubMed] [Google Scholar]
  9. Herve M., Garnier A., Tosi L., Steinbuch M. Ceruloplasmin-anion interaction. A circular dichroism spectroscopic study. Biochim Biophys Acta. 1976 Aug 9;439(2):432–441. doi: 10.1016/0005-2795(76)90080-5. [DOI] [PubMed] [Google Scholar]
  10. Kasper C. B. Ceruloplasmin-anion interactions. Induced spectral transitions in the visible range. J Biol Chem. 1968 Jun 25;243(12):3218–3222. [PubMed] [Google Scholar]
  11. Malkin R., Malmström B. G. The state and function of copper in biological systems. Adv Enzymol Relat Areas Mol Biol. 1970;33:177–244. doi: 10.1002/9780470122785.ch4. [DOI] [PubMed] [Google Scholar]
  12. Malkin R., Malmström R. G., Vänngård T. The requirement of the "non-blue" copper (II) for the activity of fungal laccase. FEBS Lett. 1968 Jul;1(1):50–54. doi: 10.1016/0014-5793(68)80016-x. [DOI] [PubMed] [Google Scholar]
  13. Markley J. L., Ulrich E. L., Berg S. P., Krogmann D. W. Nuclear magnetic resonance studies of the copper binding sites of blue copper proteins: oxidized, reduced, and apoplastocyanin. Biochemistry. 1975 Oct 7;14(20):4428–4433. doi: 10.1021/bi00691a014. [DOI] [PubMed] [Google Scholar]
  14. McKee D. J., Frieden E. Binding of transition metal ions by ceruloplasmin (ferroxidase). Biochemistry. 1971 Oct 12;10(21):3880–3883. doi: 10.1021/bi00797a013. [DOI] [PubMed] [Google Scholar]
  15. McMillin D. R., Holwerda R. A., Gray H. B. Preparation and spectroscopic studies of cobalt(II)-stellacyanin. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1339–1341. doi: 10.1073/pnas.71.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McMillin D. R., Rosenberg R. C., Gray H. B. Preparation and spectroscopic studies of cobalt(II) derivatives of blue copper proteins. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4760–4762. doi: 10.1073/pnas.71.12.4760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mondoví B., Graziani M. T., Mims W. B., Oltzik R., Peisach J. Pulsed electron paramagnetic resonance studies of types I and II coper of Rhus vernicifera laccase and porcine ceruloplasmin. Biochemistry. 1977 Sep 20;16(19):4198–4202. doi: 10.1021/bi00638a011. [DOI] [PubMed] [Google Scholar]
  18. Mondoví B., Morpurgo L., Rotilio G., Finazzi-Agró A. Recent studies on copper containing oxidases. Adv Exp Med Biol. 1976;74:424–437. doi: 10.1007/978-1-4684-3270-1_36. [DOI] [PubMed] [Google Scholar]
  19. Rydén L., Björk I. Reinvestigation of some physicochemical and chemical properties of human ceruloplasmin (ferroxidase). Biochemistry. 1976 Aug 10;15(16):3411–3417. doi: 10.1021/bi00661a003. [DOI] [PubMed] [Google Scholar]
  20. Solomon E. I., Clendening P. J., Gray H. B., Grunthaner F. J. Letter: Direct observation of sulfur coordination in bean plastocyanin by X-ray photoelectron spectroscopy. J Am Chem Soc. 1975 Jun 25;97(13):3878–3879. doi: 10.1021/ja00846a087. [DOI] [PubMed] [Google Scholar]
  21. Solomon E. I., Hare J. W., Gray H. B. Spectroscopic studies and a structural model for blue copper centers in proteins. Proc Natl Acad Sci U S A. 1976 May;73(5):1389–1393. doi: 10.1073/pnas.73.5.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Solomon E. I., Rawlings J., McMillin D. R., Stephens P. J., Gray H. B. Infrared and visible circular dichroism and magnetic circular dichroism studies on cobalt (II)-substituted blue copper proteins. J Am Chem Soc. 1976 Dec 8;98(25):8046–8048. doi: 10.1021/ja00441a028. [DOI] [PubMed] [Google Scholar]
  23. Tosi L., Garnier A., Herve M., Steinbuch M. Ceruloplasmin-anicn interaction. A resonance Raman spectroscopic study. Biochem Biophys Res Commun. 1975 Jul 8;65(1):100–106. doi: 10.1016/s0006-291x(75)80066-0. [DOI] [PubMed] [Google Scholar]
  24. Tullius T. D., Frank P., Hodgson K. O. Characterization of the blue copper site in oxidized azurin by extended x-ray absorption fine structure: Determination of a short Cu-S distance. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4069–4073. doi: 10.1073/pnas.75.9.4069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wever R., van Leeuwen F. X., van Gelder B. F. The reaction of nitric oxide with ceruloplasmin. Biochim Biophys Acta. 1973 Apr 12;302(2):236–239. doi: 10.1016/0005-2744(73)90152-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES