Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Sep;75(9):4130–4134. doi: 10.1073/pnas.75.9.4130

Alterations of hepatic Na+,K+-ATPase and bile flow by estrogen: Effects on liver surface membrane lipid structure and function

Roger A Davis †,*, Fred Kern Jr , Radene Showalter , Eileen Sutherland , Michael Sinensky , Francis R Simon
PMCID: PMC336065  PMID: 212735

Abstract

Administration of the synthetic estrogen ethinyl estradiol (17α-ethinyl-1,3,5-estratriene-3,17β-diol) decreases hepatic Na+,K+-ATPase (ATP phosphohydrolase; EC 3.6.1.3) activity and bile flow to 50% and alters the composition and structure of surface membrane lipid in rats. Although the content of phospholipids was not changed by treatment, free cholesterol (130%) and cholesterol esters (400%) were increased in liver surface membrane fractions. These observations correlate with changes in membrane viscosity, as shown by electron spin resonance probes. Both rotational correlation time, using the isotropic probe methyl (12-nitroxyl)stearate, and the order parameter, determined by the anisotropic probe 5-nitroxylstearic acid, were significantly increased in liver surface membrane fractions from rats treated with ethinyl estradiol. Administration of Triton WR-1339, a nonionic detergent that corrects hepatic and serum lipid changes caused by ethinyl estradiol treatment, restored toward normal elevated membrane lipids and viscosity as well as Na+,K+-ATPase activity and bile flow. Although restoration of normal liver surface membrane structure and function may be due to reversal of abnormal lipid composition, detergents also may directly alter membrane enzyme activity. Addition of Triton WR-1339 in vitro increased Na+,K+-ATPase activity and reduced membrane viscosity of surface membranes from rats treated with ethinyl estradiol. Triton had no effect on either parameter in normal membrane preparations. Studies of membrane structure and function both in vivo and in vitro suggest that alterations in lipid composition may alter Na+,K+-ATPase function and bile flow.

Keywords: membrane viscosity, Triton WR-1339, lipid composition

Full text

PDF
4130

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Accatino L., Simon F. R. Identification and characterization of a bile acid receptor in isolated liver surface membranes. J Clin Invest. 1976 Feb;57(2):496–508. doi: 10.1172/JCI108302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adlercreutz H., Tenhunen R. Some aspects of the interaction between natural and synthetic female sex hormones and the liver. Am J Med. 1970 Nov;49:630–648. doi: 10.1016/s0002-9343(70)80130-9. [DOI] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Boyer J. L. Canalicular bile formation in the isolated perfused rat liver. Am J Physiol. 1971 Oct;221(4):1156–1163. doi: 10.1152/ajplegacy.1971.221.4.1156. [DOI] [PubMed] [Google Scholar]
  5. Coleman R. Membrane-bound enzymes and membrane ultrastructure. Biochim Biophys Acta. 1973 Apr 3;300(1):1–30. doi: 10.1016/0304-4157(73)90010-5. [DOI] [PubMed] [Google Scholar]
  6. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis R. A., Kern F., Jr Effects of ethinyl estradiol and phenobarbital on bile acid synthesis and biliary bile acid and cholesterol excretion. Gastroenterology. 1976 Jun;70(6):1130–1135. [PubMed] [Google Scholar]
  8. Davis R. A., Showalter R., Kern F., Jr Reversal by triton WR-1339 of ethynyloestradiol-induced hepatic cholesterol esterification. Biochem J. 1978 Jul 15;174(1):45–51. doi: 10.1042/bj1740045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Erlinger S., Dhumeaux D., Benhamou J. P. Effect on bile formation of inhibitors of sodium transport. Nature. 1969 Sep 20;223(5212):1276–1277. doi: 10.1038/2231276a0. [DOI] [PubMed] [Google Scholar]
  10. Evans W. H., Gurd J. W. Biosynthesis of liver membranes. Incorporation of ( 3 H)leucine into proteins and of ( 14 C)glucosamine into proteins and lipids of liver microsomal and plasma-membrane fractions. Biochem J. 1971 Nov;125(2):615–624. doi: 10.1042/bj1250615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  12. Farías R. N., Bloj B., Morero R. D., Siñeriz F., Trucco R. E. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid compostition. Biochim Biophys Acta. 1975 Jun 30;415(2):231–251. doi: 10.1016/0304-4157(75)90003-9. [DOI] [PubMed] [Google Scholar]
  13. Gennis R. B., Sinensky M., Strominger J. L. Activation of C55-isoprenoid alcohol phosphokinase from Staphylococcus aureus. II. Biophysical studies. J Biol Chem. 1976 Mar 10;251(5):1270–1276. [PubMed] [Google Scholar]
  14. Gumucio J. J., Valdivieso V. D. Studies on the mechanism of the ethynylestradiol impairment of bile flow and bile salt excretion in the rat. Gastroenterology. 1971 Sep;61(3):339–344. [PubMed] [Google Scholar]
  15. Hokin L. E., Hexum T. D. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. Arch Biochem Biophys. 1972 Aug;151(2):453–463. doi: 10.1016/0003-9861(72)90521-8. [DOI] [PubMed] [Google Scholar]
  16. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  17. Ismail-Beigi F., Edelman I. S. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na plus + K plus-activated adenosinetriphosphatase activity. J Gen Physiol. 1971 Jun;57(6):710–722. doi: 10.1085/jgp.57.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keith A. D., Sharnoff M., Cohn G. E. A summary and evaluation of spin labels used as probes for biological membrane structure. Biochim Biophys Acta. 1973 Dec 28;300(4):379–419. doi: 10.1016/0304-4157(73)90014-2. [DOI] [PubMed] [Google Scholar]
  19. Kimelberg H. K., Papahadjopoulos D. Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+ + K+)-stimulated adenosine triphosphatase. J Biol Chem. 1974 Feb 25;249(4):1071–1080. [PubMed] [Google Scholar]
  20. Kimelberg H. K. Protein-liposome interactions and their relevance to the structure and function of cell membranes. Mol Cell Biochem. 1976 Feb 25;10(3):171–190. doi: 10.1007/BF01731688. [DOI] [PubMed] [Google Scholar]
  21. Kroes J., Ostwald R. Erythrocyte membranes--effect of increased cholesterol content on permeability. Biochim Biophys Acta. 1971 Dec 3;249(2):647–650. doi: 10.1016/0005-2736(71)90147-7. [DOI] [PubMed] [Google Scholar]
  22. Kroes J., Ostwald R., Keith A. Erythrocyte membranes--compression of lipid phases by increased cholesterol content. Biochim Biophys Acta. 1972 Jul 3;274(1):71–74. doi: 10.1016/0005-2736(72)90281-7. [DOI] [PubMed] [Google Scholar]
  23. Kyte J. Structural studies of sodium and potassium ion-activated adenosine triphosphatase. The relationship between molecular structure and the mechanism of active transport. J Biol Chem. 1975 Sep 25;250(18):7443–7449. [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
  26. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  27. Oldfield E., Keough K. M., Chapman D. The study of hydrocarbon chain mobility in membrane systems using spin-label probes. FEBS Lett. 1972 Feb 15;20(3):344–346. doi: 10.1016/0014-5793(72)80103-0. [DOI] [PubMed] [Google Scholar]
  28. Pohl S. L., Birnbaumer L., Rodbell M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties. J Biol Chem. 1971 Mar 25;246(6):1849–1856. [PubMed] [Google Scholar]
  29. Reichen J., Paumgartner G. Relationship between bile flow and Na+, K+-adenosinetriphosphatase in liver plasma membranes enriched in bile canaliculi. J Clin Invest. 1977 Aug;60(2):429–434. doi: 10.1172/JCI108792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rogers M. J., Strittmatter P. Evidence for randon distribution and translational movement of cytochrome b5 in endoplasmic reticulum. J Biol Chem. 1974 Feb 10;249(3):895–900. [PubMed] [Google Scholar]
  31. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  32. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  33. Simon F. R., Arias I. M. Alteration of bile canalicular enzymes in cholestasis. A possible cause of bile secretory failure. J Clin Invest. 1973 Apr;52(4):765–775. doi: 10.1172/JCI107239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Simon F. R., Sutherland E., Accatino L. Stimulation of hepatic sodium and potassium-activated adenosine triphosphatase activity by phenobarbital. Its possible role in regulation of bile flow. J Clin Invest. 1977 May;59(5):849–861. doi: 10.1172/JCI108707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sinensky M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522–525. doi: 10.1073/pnas.71.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Solomonson L. P., Liepkalns V. A., Spector A. A. Changes in (Na+ + K+)-ATPase activity of Ehrlich ascites tumor cells produced by alteration of membrane fatty acid composition. Biochemistry. 1976 Feb 24;15(4):892–897. doi: 10.1021/bi00649a026. [DOI] [PubMed] [Google Scholar]
  37. Tanaka R., Strickland K. P. Role of phospholipid in the activation of Na+, Ka+-activated adenosine triphosphatase of beef brain. Arch Biochem Biophys. 1965 Sep;111(3):583–592. doi: 10.1016/0003-9861(65)90239-0. [DOI] [PubMed] [Google Scholar]
  38. Uesugi S., Dulak N. C., Dixon J. F., Hexum T. D., Dahl J. L., Perdue J. F., Hokin L. E. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. VI. Large scale partial purification and properties of a lubrol-solubilized bovine brain enzyme. J Biol Chem. 1971 Jan 25;246(2):531–543. [PubMed] [Google Scholar]
  39. Weihing R. R., Manganiello V. C., Chiu R., Phillips A. H. Purification of hepatic microsomal membranes. Biochemistry. 1972 Aug 1;11(16):3128–3135. doi: 10.1021/bi00766a028. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES