Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Sep;75(9):4160–4164. doi: 10.1073/pnas.75.9.4160

Absolute rates of protein synthesis during meiotic maturation of mammalian oocytes in vitro.

R M Schultz, M J LaMarca, P M Wassarman
PMCID: PMC336071  PMID: 279905

Abstract

Measurements of the rates of incorporation of [35S]methionine into protein and the specific activities of endogenous free methionine pools have been used to calculate the absolute rates of protein synthesis in mouse oocytes during spontaneous meiotic maturation in vitro. Fluorodinitro[3H]benzene was used to determine the specific activity of the oocyte's free methionine pool. It was found that the absolute rate of protein synthesis decreased from 43 to 31 pg/hr per oocyte during meiotic progression from dictyate to metaphase II (meiotic maturation), while the size of the intracellular free methionine pool decreased from 61 to 35 fmol per oocyte during the same period. Comparable measurements made on ovulated mouse oocytes that had undergone meiotic maturation in vivo strongly suggest that the decrease in the absolute rate of protein synthesis observed during meiotic maturation in vitro is physiologically significant. An alternative method that depends upon differential expansion of the oocyte's endogenous methionine pool was also used to determine absolute rates of protein synthesis. The results of these experiments are in excellent agreement with those obtained by using fluorodinitro[3H]benzene, indicating that the oocyte's free methionine pool is not compartmentalized.

Full text

PDF
4160

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggers J. D., Whittingham D. G., Donahue R. P. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc Natl Acad Sci U S A. 1967 Aug;58(2):560–567. doi: 10.1073/pnas.58.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinster R. L., Wiebold J. L., Brunner S. Protein metabolism in preimplanted mouse ova. Dev Biol. 1976 Jul 15;51(2):215–224. doi: 10.1016/0012-1606(76)90139-1. [DOI] [PubMed] [Google Scholar]
  3. Cho W. K., Stern S., Biggers J. D. Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J Exp Zool. 1974 Mar;187(3):383–386. doi: 10.1002/jez.1401870307. [DOI] [PubMed] [Google Scholar]
  4. Cross P. C., Brinster R. L. In vitro development of mouse oocytes. Biol Reprod. 1970 Dec;3(3):298–307. doi: 10.1093/biolreprod/3.3.298. [DOI] [PubMed] [Google Scholar]
  5. Donahue R. P. Maturation of the mouse oocyte in vitro. I. Sequence and timing of nuclear progression. J Exp Zool. 1968 Oct;169(2):237–249. doi: 10.1002/jez.1401690210. [DOI] [PubMed] [Google Scholar]
  6. Eppig J. J., Jr, Dumont J. N. Amino acid pools in developing oocytes of Xenopus laevis. Dev Biol. 1972 Jul;28(3):531–536. doi: 10.1016/0012-1606(72)90036-x. [DOI] [PubMed] [Google Scholar]
  7. Golbus M. S., Calarco P. G., Epstein C. J. The effects of inhibitors of RNA synthesis (alpha-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J Exp Zool. 1973 Nov;186(2):207–216. doi: 10.1002/jez.1401860211. [DOI] [PubMed] [Google Scholar]
  8. Manes C. The participation of the embryonic genome during early cleavage in the rabbit. Dev Biol. 1973 Jun;32(2):453–459. doi: 10.1016/0012-1606(73)90254-6. [DOI] [PubMed] [Google Scholar]
  9. Regier J. C., Kafatos F. C. Microtechnique for determining the specific activity of radioactive intracellular leucine and applications to in vivo studies of protein synthesis. J Biol Chem. 1971 Nov;246(21):6480–6488. [PubMed] [Google Scholar]
  10. Schuetz A. W. Role of hormones in oocyte maturation. Biol Reprod. 1974 Mar;10(2):150–178. doi: 10.1095/biolreprod10.2.150. [DOI] [PubMed] [Google Scholar]
  11. Schultz R. M., Letourneau G. E., Wassarman P. M. Meiotic maturation of mouse oocytes in vitro: protein synthesis in nucleate and anucleate oocyte fragments. J Cell Sci. 1978 Apr;30:251–264. doi: 10.1242/jcs.30.1.251. [DOI] [PubMed] [Google Scholar]
  12. Schultz R. M., Wassarman P. M. Biochemical studies of mammalian oogenesis: Protein synthesis during oocyte growth and meiotic maturation in the mouse. J Cell Sci. 1977 Apr;24:167–194. doi: 10.1242/jcs.24.1.167. [DOI] [PubMed] [Google Scholar]
  13. Schultz R. M., Wassarman P. M. Specific changes in the pattern of protein synthesis during meiotic maturation of mammalian oocytes in vitro. Proc Natl Acad Sci U S A. 1977 Feb;74(2):538–541. doi: 10.1073/pnas.74.2.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith L. D., Ecker R. E., Subtelny S. In vitro induction of physiological maturation in Rana pipiens oocytes removed from their ovarian follicles. Dev Biol. 1968 Jun;17(6):627–643. doi: 10.1016/0012-1606(68)90010-9. [DOI] [PubMed] [Google Scholar]
  15. Smith L. D., Ecker R. E., Subtelny S. The initiation of protein synthesis in eggs of rana pipiens. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1724–1728. doi: 10.1073/pnas.56.6.1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sorensen R. A. Cinemicrography of mouse oocyte maturation utilizing Nomarski differential-interference microscopy. Am J Anat. 1973 Mar;136(3):265–276. doi: 10.1002/aja.1001360302. [DOI] [PubMed] [Google Scholar]
  17. Wassarman P. M., Josefowicz W. J., Letourneau G. E. Meiotic maturation of mouse oocytes in vitro: inhibition of maturation at specific stages of nuclear progression. J Cell Sci. 1976 Dec;22(3):531–545. doi: 10.1242/jcs.22.3.531. [DOI] [PubMed] [Google Scholar]
  18. Wassarman P. M., Letourneau G. E. Meiotic maturation of mouse oocytes in vitro: association of newly synthesized proteins with condensing chromosomes. J Cell Sci. 1976 May;20(3):549–568. doi: 10.1242/jcs.20.3.549. [DOI] [PubMed] [Google Scholar]
  19. Wassarman P. M., Letourneau G. E. RNA synthesis in fully-grown mouse oocytes. Nature. 1976 May 6;261(5555):73–74. doi: 10.1038/261073a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES