Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Sep;75(9):4180–4183. doi: 10.1073/pnas.75.9.4180

Mechanism of the in vitro breakdown of guanosine 5'-diphosphate 3'-diphosphate in Escherichia coli.

E A Heinemeyer, D Richter
PMCID: PMC336075  PMID: 212739

Abstract

Degradation of guanosine tetraphosphate (ppGpp) involves an enzyme associated with the ribosomal fraction from spoT+ strains of Escherichia coli. Double-label experiments with pp[3h]gpp, pp[3H]Gpp, or pp[3H]Gpp as substrate strongly suggest that ppG is the degradation product and that the enzyme releases two phosphates coordinately from the 3' position of ppGpp. In the absence of pppA this reaction proceeds in an uncoupled fashion, yielding ppG and PPi, but in the presence of pppA the decay is considerably enhanced and a pppA-ppi exchange reaction occurs in which the 3'-pyrophosphoryl group of ppGpp displaces the gamma and beta phosphates of pppA. Sodium PPi at 4 m7 inhibits decay of ppGpp regardless of whether or not pppA is present.

Full text

PDF
4180

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERG P. Acyl adenylates; the synthesis and properties of adenyl acetate. J Biol Chem. 1956 Oct;222(2):1015–1023. [PubMed] [Google Scholar]
  2. Cashel M. Regulation of bacterial ppGpp and pppGpp. Annu Rev Microbiol. 1975;29:301–318. doi: 10.1146/annurev.mi.29.100175.001505. [DOI] [PubMed] [Google Scholar]
  3. Cashel M. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem. 1969 Jun 25;244(12):3133–3141. [PubMed] [Google Scholar]
  4. Chaloner-Larsson G., Yamazaki H. Synthesis of guanosine 5'-triphosphate,3'-diphosphate in a spo T strain of Escherichia coli. Can J Biochem. 1976 Nov;54(11):935–940. doi: 10.1139/o76-135. [DOI] [PubMed] [Google Scholar]
  5. De Boer H. A., Bakker A. J., Gruber M. Breakdown of ppGpp in spoT and spoT-cells of Escherichia coli. Manganese and energy requirement and tetracycline inhibition. FEBS Lett. 1977 Jul 1;79(1):19–24. doi: 10.1016/0014-5793(77)80341-4. [DOI] [PubMed] [Google Scholar]
  6. De Boer H. A., Bakker A. J., Weyer W. J., Gruber M. The role of energy-generating processes in the degradation of guanosine tetrophosphate, ppGpp, in Escherichia coli. Biochim Biophys Acta. 1976 May 19;432(3):361–368. doi: 10.1016/0005-2787(76)90146-5. [DOI] [PubMed] [Google Scholar]
  7. Gallant J., Irr J., Cashel M. The mechanism of amino acid control of guanylate and adenylate biosynthesis. J Biol Chem. 1971 Sep 25;246(18):5812–5816. [PubMed] [Google Scholar]
  8. Gallant J., Margason G., Finch B. On the turnover of ppGpp in Escherichia coli. J Biol Chem. 1972 Oct 10;247(19):6055–6058. [PubMed] [Google Scholar]
  9. Gevers W., Kleinkauf H., Lipmann F. The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci U S A. 1968 May;60(1):269–276. doi: 10.1073/pnas.60.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heinemeyer E. A., Richter D. In vitro degradation of guanosine tetraphosphate (ppGpp) by an enzyme associated with the ribosomal fraction from Escherichia coli. FEBS Lett. 1977 Dec 15;84(2):357–361. doi: 10.1016/0014-5793(77)80724-2. [DOI] [PubMed] [Google Scholar]
  11. Irr J., Gallant J. The control of ribonucleic acid synthesis in Escherichia coli. II. Stringent control of energy metabolism. J Biol Chem. 1969 Apr 25;244(8):2233–2239. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lazzarini R. A., Johnson L. D. Regulation of ribosomal RNA synthesis in cold-shocked E. coli. Nat New Biol. 1973 May 2;243(122):17–20. [PubMed] [Google Scholar]
  14. Sokawa Y., Nakao E., Kaziro Y. On the nature of the control by RC gene in e. coli: amino acid-dependent control of lipid synthesis. Biochem Biophys Res Commun. 1968 Oct 10;33(1):108–112. doi: 10.1016/0006-291x(68)90263-5. [DOI] [PubMed] [Google Scholar]
  15. Stamminger G., Lazzarini R. A. Analysis of the RNA of defective VSV particles. Cell. 1974 Sep;3(1):85–93. doi: 10.1016/0092-8674(74)90044-0. [DOI] [PubMed] [Google Scholar]
  16. Sy J. In vitro degradation of guanosine 5'-diphosphate, 3'-diphosphate. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5529–5533. doi: 10.1073/pnas.74.12.5529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sy J., Lipmann F. Identification of the synthesis of guanosine tetraphosphate (MS I) as insertion of a pyrophosphoryl group into the 3'-position in guanosine 5'-diphosphate. Proc Natl Acad Sci U S A. 1973 Feb;70(2):306–309. doi: 10.1073/pnas.70.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yang H. L., Zubay G., Urm E., Heiness G., Cashel M. Effects of guanosine tetraphosphate, guanosine pentaphosphate, and beta-gamma methylenyl-guanosine pentaphosphate on gene expression of Escherichia coli in vitro. Proc Natl Acad Sci U S A. 1974 Jan;71(1):63–67. doi: 10.1073/pnas.71.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. van Ooyen A. J., de Boer H. A., Ab G., Gruber M. Specific inhibition of ribosomal RNA synthesis in vitro by guanosine 3' diphosphate, 5' diphosphate. Nature. 1975 Apr 10;254(5500):530–531. doi: 10.1038/254530a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES