Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Sep;75(9):4219–4223. doi: 10.1073/pnas.75.9.4219

Resolution of the membrane moiety of the H+-ATPase complex into two kinds of subunits.

N Sone, M Yoshida, H Hirata, Y Kagawa
PMCID: PMC336083  PMID: 151864

Abstract

The H+-translocating ATPase complex from the thermophilic bacterium PS3 (TF0-F1) is composed of a water-soluble part with ATP-hydrolyzing activity (TF1) and a membrane moiety with H+-conducting activity (TF0). TF0 was obtained by treating TF0-F1 with urea and removing contaminations on a carboxymethyl-cellulose column. This TF0 contained only two kinds of subunits, band 6 protein (13,500 daltons) and band 8 protein (5400 daltons), and it was active in H+ conduction and TF1 binding when reconstituted into proteoliposomes (TF0 vesicles). The binding of TF1 to TF0 present in vesicles restored energy-transducing activities, such as ATP-32Pi exchange, dicyclohexylcarbodiimide-sensitive ATPase, and ATP-dependent enhancement of 8-anilinonaphthalene-1-sulfonate fluorescence. Treatments such as protease digestion and chemical modification with acetic anhydride, succinic anhydride, or diazobenzenesulfonic acid destroyed the TF1-binding activity, which was caused by band 6 protein. Band 8 protein was a proteolipid that reacted specifically with dicylcohexyl-carbodiimide and seemed to play a central role in H+ conduction through the membrane.

Full text

PDF
4219

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altendorf K., Zitzmann W. Identification of the DCCD-reactive protein of the energy transducing adenosinetriphosphatase complex from Escherichia coli. FEBS Lett. 1975 Nov 15;59(2):268–272. doi: 10.1016/0014-5793(75)80390-5. [DOI] [PubMed] [Google Scholar]
  2. Cattell K. J., Lindop C. R., Knight I. G., Beechey R. B. The identification of the site of action of NN'-dicyclohexylcarbodi-imide as a proteolipid in mitochondrial membranes. Biochem J. 1971 Nov;125(1):169–177. doi: 10.1042/bj1250169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fillingame R. H. Identification of the dicyclohexylcarbodiimide-reactive protein component of the adenosine 5'-triphosphate energy-transducing system of Escherichia coli. J Bacteriol. 1975 Nov;124(2):870–883. doi: 10.1128/jb.124.2.870-883.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibson F., Cox G. B., Downie J. A., Radik J. A mutation affecting a second component of the F0 portion of the magnesium ion-stimulated adenosine triphosphatase of Escherichia coli K12. The uncC424 allele. Biochem J. 1977 Apr 15;164(1):193–198. doi: 10.1042/bj1640193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hinkle P. C., Horstman L. L. Respiration-driven proton transport in submitochondrial particles. J Biol Chem. 1971 Oct 10;246(19):6024–6028. [PubMed] [Google Scholar]
  6. Kagawa Y., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 8. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase. J Biol Chem. 1966 May 25;241(10):2461–2466. [PubMed] [Google Scholar]
  7. Kagawa Y., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. IX. Reconstruction of oligomycin-sensitive adenosine triphosphatase. J Biol Chem. 1966 May 25;241(10):2467–2474. [PubMed] [Google Scholar]
  8. Kagawa Y., Sone N., Yoshida M., Hirata H., Okamoto H. Proton translocating ATPase of a thermophilic bacterium. Morphology, subunits, and chemical composition. J Biochem. 1976 Jul;80(1):141–151. doi: 10.1093/oxfordjournals.jbchem.a131246. [DOI] [PubMed] [Google Scholar]
  9. Kagawa Y. Transport of nutrients by a thermophilic bacterium--reconstruction of vesicles from crystalline ATPase or solubilized alanine carrier. J Cell Physiol. 1976 Dec;89(4):569–573. doi: 10.1002/jcp.1040890413. [DOI] [PubMed] [Google Scholar]
  10. MacLennan D. H., Tzagoloff A. Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein. Biochemistry. 1968 Apr;7(4):1603–1610. doi: 10.1021/bi00844a050. [DOI] [PubMed] [Google Scholar]
  11. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
  12. Okamoto H., Sone N., Hirata H., Yoshida M., Kagawa Y. Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium. J Biol Chem. 1977 Sep 10;252(17):6125–6131. [PubMed] [Google Scholar]
  13. Ryrie I. J., Blackmore P. F. Energy-linked activities in reconstituted yeast adenosine triphosphatase proteoliposome. Adenosine triphosphate formation coupled with electron flow between ascorbate and ferricyanide. Arch Biochem Biophys. 1976 Sep;176(1):127–135. doi: 10.1016/0003-9861(76)90148-x. [DOI] [PubMed] [Google Scholar]
  14. Sebald W. Biogenesis of mitochondrial ATPase. Biochim Biophys Acta. 1977 Jun 21;463(1):1–27. doi: 10.1016/0304-4173(77)90002-7. [DOI] [PubMed] [Google Scholar]
  15. Senior A. E. On the relationship between the oligomycin-sensitivity conferring protein and other mitochondrial coupling factors. J Bioenerg. 1971 Aug;2(3):141–150. doi: 10.1007/BF01648909. [DOI] [PubMed] [Google Scholar]
  16. Serrano R., Kanner B. I., Racker E. Purification and properties of the proton-translocating adenosine triphosphatase complex of bovine heart mitochondria. J Biol Chem. 1976 Apr 25;251(8):2453–2461. [PubMed] [Google Scholar]
  17. Sierra M. F., Tzagoloff A. Assembly of the mitochondrial system. Purification of a mitochondrial product of the ATPase. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3155–3159. doi: 10.1073/pnas.70.11.3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sigrist H., Sigrist-Nelson K., Gitler C. Single-phase butanol extraction: a new tool for proteolipid isolation. Biochem Biophys Res Commun. 1977 Jan 10;74(1):178–184. doi: 10.1016/0006-291x(77)91391-2. [DOI] [PubMed] [Google Scholar]
  19. Sone N., Takeuchi Y., Yoshida M., Ohno K. Formations of electrochemical proton gradient and adenosine triphosphate in proteoliposomes containing purified adenosine triphosphatase and bacteriorhodopsin. J Biochem. 1977 Dec;82(6):1751–1758. doi: 10.1093/oxfordjournals.jbchem.a131873. [DOI] [PubMed] [Google Scholar]
  20. Sone N., Yoshida M., Hirata H., Kagawa Y. Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium. J Biol Chem. 1977 May 10;252(9):2956–2960. [PubMed] [Google Scholar]
  21. Sone N., Yoshida M., Hirata H., Kagawa Y. Purification and properties of a dicyclohexylcarbodiimide-sensitive adenosine triphosphatase from a thermophilic bacterium. J Biol Chem. 1975 Oct 10;250(19):7917–7923. [PubMed] [Google Scholar]
  22. Sone N., Yoshida M., Hirata H., Kagawa Y. Reconstitution of vesicles capable of energy transformation from phospholipids and adenosine triphosphatase of a thermophilic bacterium. J Biochem. 1977 Feb;81(2):519–528. doi: 10.1093/oxfordjournals.jbchem.a131485. [DOI] [PubMed] [Google Scholar]
  23. Sone N., Yoshida M., Hirata H., Okamoto H., Kagawa Y. Electrochemical potential of protons in vesicles reconstituted from purified, proton-translocating adenosine triphosphatase. J Membr Biol. 1976 Dec 28;30(2):121–134. doi: 10.1007/BF01869663. [DOI] [PubMed] [Google Scholar]
  24. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  25. Winget G. D., Kanner N., Racker E. Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin. Biochim Biophys Acta. 1977 Jun 9;460(3):490–499. doi: 10.1016/0005-2728(77)90087-1. [DOI] [PubMed] [Google Scholar]
  26. Yoshida M., Okamoto H., Sone N., Hirata H., Kagawa Y. Reconstitution of thermostable ATPase capable of energy coupling from its purified subunits. Proc Natl Acad Sci U S A. 1977 Mar;74(3):936–940. doi: 10.1073/pnas.74.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yoshida M., Okamoto H., Sone N., Hirata H., Kagawa Y. Reconstitution of thermostable ATPase capable of energy coupling from its purified subunits. Proc Natl Acad Sci U S A. 1977 Mar;74(3):936–940. doi: 10.1073/pnas.74.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yoshida M., Sone N., Hirata H., Kagawa Y. A highly stable adenosine triphosphatase from a thermophillie bacterium. Purification, properties, and reconstitution. J Biol Chem. 1975 Oct 10;250(19):7910–7916. [PubMed] [Google Scholar]
  29. Yoshida M., Sone N., Hirata H., Kagawa Y. Reconstitution of adenosine triphosphatase of thermophilic bacterium from purified individual subunits. J Biol Chem. 1977 May 25;252(10):3480–3485. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES