Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Sep;75(9):4354–4358. doi: 10.1073/pnas.75.9.4354

Negative control of hemoglobin production in somatic cell hybrids due to heme deficiency.

S Benoff, S A Bruce, A I Skoultchi
PMCID: PMC336113  PMID: 279921

Abstract

In somatic cell hybrids formed by the fusion of mouse erythroleukemic cells with mouse primary bone marrow cells, retention of the X chromosome contributed by the bone marrow parent is correlated with inhibition of hemoglobin accumulation in response to dimethyl sulfoxide. The inhibition of hemoglobin accumulation is not due to the absence of globin mRNA. Dimethyl sulfoxide-treated hybrid cells accumulate polyribosomal globin mRNA to levels comparable to those of the parental erythroleukemic cells under the same conditions. Heme, or its precursor delta-aminolevulinc acid, can overcome the effects of the bone marrow X chromosome and induce hemoglobin accumulation in the dimethyl sulfoxide-treated hybrid cells. The data suggest that the X chromosome contributed by the bone marrow cells inhibits hemoglobin production by inhibiting inducible heme biosynthesis, most probably at the step catalyzed by delta-aminolevulinic acid synthetase (EC 2.3.1.37).

Full text

PDF
4354

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlquist D. A., Schwartz S. Use of leuco-dyes in the quantitative colorimetric microdetermination of hemoglobin and other heme compounds. Clin Chem. 1975 Mar;21(3):362–369. [PubMed] [Google Scholar]
  2. Benoff S., Skoultchi A. I. X-linked control of hemoglobin production in somatic hybrids of mouse erythroleukemic cells and mouse lymphoma or bone marrow cells. Cell. 1977 Sep;12(1):263–274. doi: 10.1016/0092-8674(77)90204-5. [DOI] [PubMed] [Google Scholar]
  3. Conscience J. F., Miller R. A., Henry J., Ruddle F. H. Acetylcholinesterase, carbonic anhydrase and catalase activity in Friend erythroleukemic cells, non-erythroid mouse cell lines and their somatic hybrids. Exp Cell Res. 1977 Mar 15;105(2):401–412. doi: 10.1016/0014-4827(77)90137-9. [DOI] [PubMed] [Google Scholar]
  4. Conscience J. F., Ruddle F. H., Skoultchi A., Darlington G. J. Somatic cell hybrids between Friend erythroleukemia cells and mouse hepatoma cells. Somatic Cell Genet. 1977 Mar;3(2):157–172. doi: 10.1007/BF01551812. [DOI] [PubMed] [Google Scholar]
  5. Cooper M. C., Levy J., Cantor L. N., Marks P. A., Rifkind R. A. The effect of erythropoietin on colonial growth of erythroid precursor cells in vitro. Proc Natl Acad Sci U S A. 1974 May;71(5):1677–1680. doi: 10.1073/pnas.71.5.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dabney B. J., Beaudet A. L. Increase in globin chains and globin mRNA in erythroleukemia cells in response to hemin. Arch Biochem Biophys. 1977 Feb;179(1):106–112. doi: 10.1016/0003-9861(77)90092-3. [DOI] [PubMed] [Google Scholar]
  7. Deisseroth A., Barker J., Anderson W. F., Nienhuis Hemoglobin synthesis in somatic cell hybrids: coexpression of mouse with human or chinese hamster globin genes in interspecific somatic cell hybrids of mouse erythroleukemia cells. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2682–2686. doi: 10.1073/pnas.72.7.2682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deisseroth A., Burk R., Picciano D., Anderson W. F., Nienhuis A., Minna J. Hemoglobin synthesis in somatic cell hybrids: globin gene expression in hybrids between mouse erythroleukemia and human marrow cells or fibroblasts. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1102–1106. doi: 10.1073/pnas.72.3.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deisseroth A., Velez R., Burk R. D., Minna J., Anderson W. F., Nienhuis A. Extinction of globin gene expression in human fibroblast x mouse erythroleukemia cell hybrids. Somatic Cell Genet. 1976 Jul;2(4):373–384. doi: 10.1007/BF01538841. [DOI] [PubMed] [Google Scholar]
  10. Deisseroth A., Velez R., Nienhuis A. W. Hemoglobin synthesis in somatic cell hybrids: independent segregation of the human alpha- and beta-globin genes. Science. 1976 Mar 26;191(4233):1262–1264. doi: 10.1126/science.943846. [DOI] [PubMed] [Google Scholar]
  11. Ebert P. S., Ikawa Y. Induction of delta-aminolevulinic acid synthetase during erythroid differentiation of cultured leukemia cells. Proc Soc Exp Biol Med. 1974 Jun;146(2):601–604. doi: 10.3181/00379727-146-38155. [DOI] [PubMed] [Google Scholar]
  12. Friend C., Scher W., Holland J. G., Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1971 Feb;68(2):378–382. doi: 10.1073/pnas.68.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grayzel A. I., Hörchner P., London I. M. The stimulation of globin synthesis by heme. Proc Natl Acad Sci U S A. 1966 Mar;55(3):650–655. doi: 10.1073/pnas.55.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harrison P. R., Affara N., McNab A., Paul J. Erythroid differentiation in a Friend erythroleukemic cell X lymphoma hybrid cell line is limited, possibly due to reduced hem levels. Exp Cell Res. 1977 Oct 15;109(2):237–246. doi: 10.1016/0014-4827(77)90002-7. [DOI] [PubMed] [Google Scholar]
  15. Harrison P. R. Analysis of erythropoeisis at the molecular level. Nature. 1976 Jul 29;262(5567):353–356. doi: 10.1038/262353a0. [DOI] [PubMed] [Google Scholar]
  16. Housman D., Skoultchi A., Forget B. G., Benz E. J., Jr Use of globin cDNA as a hybridization probe for globin mRNA. Ann N Y Acad Sci. 1974 Nov 29;241(0):280–289. doi: 10.1111/j.1749-6632.1974.tb21887.x. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Levere R. D., Granick S. Control of hemoglobin synthesis in the cultured chick blastoderm by delta-aminolevulinic acid synthetase: increase in the rate of hemoglobin formation with delta-aminolevulinic acid. Proc Natl Acad Sci U S A. 1965 Jul;54(1):134–137. doi: 10.1073/pnas.54.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Orkin S. H., Harosi F. I., Leder P. Differentiation in erythroleukemic cells and their somatic hybrids. Proc Natl Acad Sci U S A. 1975 Jan;72(1):98–102. doi: 10.1073/pnas.72.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ross J., Gielen J., Packman S., Ikawa Y., Leder P. Globin gene expression in cultured erythroleukemic cells. J Mol Biol. 1974 Aug 25;87(4):697–714. doi: 10.1016/0022-2836(74)90079-5. [DOI] [PubMed] [Google Scholar]
  21. Ross J., Sautner D. Induction of globin mRNA accumulation by hemin in cultured erythroleukemic cells. Cell. 1976 Aug;8(4):513–520. doi: 10.1016/0092-8674(76)90219-1. [DOI] [PubMed] [Google Scholar]
  22. Ruddle F. H., Kucherlapati R. S. Hybrid cells and human genes. Sci Am. 1974 Jul;231(1):36–44. doi: 10.1038/scientificamerican0774-36. [DOI] [PubMed] [Google Scholar]
  23. Sassa S. Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells. J Exp Med. 1976 Feb 1;143(2):305–315. doi: 10.1084/jem.143.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. White J. M., Brain M. C., Ali M. A. Alpha- and beta- peptide chain synthesis in sideroblastic anaemia. Br J Haematol. 1969 Dec;17(6):607–608. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES