Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Sep;75(9):4404–4407. doi: 10.1073/pnas.75.9.4404

Kinetics of desynchronization and distribution of generation times in synchronized cell populations.

J S Murphy, R D'Alisa, E L Gershey, F R Landsberger
PMCID: PMC336123  PMID: 279924

Abstract

The kinetics of the distribution of generation times in synchronized cells can be analyzed by using Fourier transform analysis. Deviations of the experimental data from the curve of completely asynchronous growth reflect the degree of synchrony at a particular time. Fourier transform analysis of these deviations yields the average generation time as well as information on the distribution of generation times characterizing a synchronized culture. A detailed analysis of synchronized cell cultures does not provide any evidence for the existence of a subcycle or a polymodal distribution in generation times. The data do indicate that cell-cell interaction occurs at cell densities as low as 2.5 X 10(3)/cm2. It is also shown that the Eyring-Stover formalism for the dynamics of survival can correctly describe the distribution of the first round of cell divisions in a synchronized culture.

Full text

PDF
4404

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  2. ENGELBERG J. THE DECAY OF SYNCHRONIZATION OF CELL DIVISION. Exp Cell Res. 1964 Dec;36:647–662. doi: 10.1016/0014-4827(64)90320-9. [DOI] [PubMed] [Google Scholar]
  3. Eyring H., Stover B. J. The dynamics of life. II. The steady-state theory of mutation rates. Proc Natl Acad Sci U S A. 1970 Jun;66(2):441–444. doi: 10.1073/pnas.66.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eyring H., Stover B. J. The dynamics of life: aging. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3512–3515. doi: 10.1073/pnas.69.12.3512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Klevecz R. R. An automated system for cell cycle analysis. Anal Biochem. 1972 Oct;49(2):407–415. doi: 10.1016/0003-2697(72)90443-5. [DOI] [PubMed] [Google Scholar]
  6. Klevecz R. R. Quantized generation time in mammalian cells as an expression of the cellular clock. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4012–4016. doi: 10.1073/pnas.73.11.4012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. PETERSEN D. F., ANDERSON E. C. QUANTITY PRODUCTION OF SYNCHRONIZED MAMMALIAN CELLS IN SUSPENSION CULTURE. Nature. 1964 Aug 8;203:642–643. doi: 10.1038/203642a0. [DOI] [PubMed] [Google Scholar]
  8. Shields R., Smith J. A. Cells regulate their proliferation through alterations in transition probability. J Cell Physiol. 1977 Jun;91(3):345–355. doi: 10.1002/jcp.1040910304. [DOI] [PubMed] [Google Scholar]
  9. Smith J. A., Martin L. Do cells cycle? Proc Natl Acad Sci U S A. 1973 Apr;70(4):1263–1267. doi: 10.1073/pnas.70.4.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Spudich J. L., Koshland D. E., Jr Non-genetic individuality: chance in the single cell. Nature. 1976 Aug 5;262(5568):467–471. doi: 10.1038/262467a0. [DOI] [PubMed] [Google Scholar]
  11. Stoker M. G. Role of diffusion boundary layer in contact inhibition of growth. Nature. 1973 Nov 23;246(5430):200–203. doi: 10.1038/246200a0. [DOI] [PubMed] [Google Scholar]
  12. TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES