Abstract
A galactosyltransferase glycopeptide acceptor purified from human malignant effusions was tested for its effects on cell growth in vitro and in vivo. Addition of the glycopeptide to the media of cells growing in tissue culture caused a significant inhibition of attachment and growth of transformed cells but had minimal effect on nontransformed cells. Transformed hamster cells (BHKpy, BHKpygiv, NILpy) and human malignant cells (BT-20 human breast and pancreatic carcinoma cells) were killed by the addition of as little as 0.5 μg of acceptor (per ml of medium), while nontransformed counterparts did not show a significant change in growth or morphology. In vivo studies showed that the acceptor inhibited development and progression of tumors in hamsters inoculated with tumorigenic BHKpy cells. Growth of tumors was inhibited 69-94% in animals given 20 μg of acceptor subcutaneously and 39-67% when acceptor was given intraperitoneally at the time of tumor cell inoculation. Administration of the acceptor after the development of a palpable tumor (≈0.5 cm) caused a 60-85% reduction in growth rate and, in some cases, actual reduction in size and disappearance of palpable tumor. These studies demonstrate that a galactosyltransferase glycopeptide acceptor purified from human malignant effusions produces selective inhibition of transformed cell growth in animal and tissue culture systems.
Keywords: tumor inhibition, growth inhibition
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balsamo J., Lilien J. The binding of tissue-specific adhesive molecules to the cell surface. A molecular basis for specificity. Biochemistry. 1975 Jan 14;14(1):167–171. doi: 10.1021/bi00672a028. [DOI] [PubMed] [Google Scholar]
- Carswell E. A., Old L. J., Kassel R. L., Green S., Fiore N., Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3666–3670. doi: 10.1073/pnas.72.9.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Codington J. F., Sanford B. H., Jeanloz R. W. Cell-surface glycoproteins of two sublines of the TA3 tumor. J Natl Cancer Inst. 1973 Aug;51(2):585–591. [PubMed] [Google Scholar]
- Fuks A., Banjo C., Shuster J., Freedman S. O., Gold P. Carcinoembryonic antigen (CEA): molecular biology and clinical significance. Biochim Biophys Acta. 1975 Jul 11;417(2):123–152. doi: 10.1016/0304-419x(75)90002-5. [DOI] [PubMed] [Google Scholar]
- Green S., Dobrjansky A., Carswell E. A., Kassel R. L., Old L. J., Fiore N., Schwartz M. K. Partial purification of a serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1976 Feb;73(2):381–385. doi: 10.1073/pnas.73.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handler A. H., Magalini S. I. A factor toxic to chick embryos in blood of tumor bearing animals. Eur J Cancer. 1966 Aug;2(3):205–209. doi: 10.1016/0014-2964(66)90055-7. [DOI] [PubMed] [Google Scholar]
- Helson L., Green S., Carswell E., Old L. J. Effect of tumour necrosis factor on cultured human melanoma cells. Nature. 1975 Dec 25;258(5537):731–732. doi: 10.1038/258731a0. [DOI] [PubMed] [Google Scholar]
- Holmberg B. Further biochemical studies on a dialysable polypeptide obtained from tumor fluids. Eur J Cancer. 1968 Jul;4(3):263–269. doi: 10.1016/0014-2964(68)90051-0. [DOI] [PubMed] [Google Scholar]
- Holmberg B. The effects on cell multiplication in vitro of a dialysable polypeptide derived from tumor fluids. Eur J Cancer. 1968 Jul;4(3):271–277. doi: 10.1016/0014-2964(68)90052-2. [DOI] [PubMed] [Google Scholar]
- Kim Y. S., Isaacs R., Perdomo J. M. Alterations of membrane glycopeptides in human colonic adenocarcinoma. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4869–4873. doi: 10.1073/pnas.71.12.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y. S., Perdomo J., Nordberg J. Glycoprortein biosynthesis in small intestinal mucosa. I. A study of glycosyltransferases in microsomal subfractions. J Biol Chem. 1971 Sep 10;246(17):5466–5476. [PubMed] [Google Scholar]
- LASFARGUES E. Y., OZZELLO L. Cultivation of human breast carcinomas. J Natl Cancer Inst. 1958 Dec;21(6):1131–1147. [PubMed] [Google Scholar]
- LaMont J. T., Weiser M. M., Isselbacher K. J. Cell surface glycosyltransferase activity in normal and neoplastic intestinal epithelium of the rat. Cancer Res. 1974 Dec;34(12):3225–3228. [PubMed] [Google Scholar]
- Nicolson G. L., Lacorbiere M. Cell contact-dependent increase in membrane D-galactopyranosyl-like residues on normal, but not virus- or spontaneously-transformed, murine fibroblasts. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1672–1676. doi: 10.1073/pnas.70.6.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podolsky D. K., Weiser M. M. Galactosyltransferase activities in human sera: detection of a cancer-associated isoenzyme. Biochem Biophys Res Commun. 1975 Jul 22;65(2):545–551. doi: 10.1016/s0006-291x(75)80181-1. [DOI] [PubMed] [Google Scholar]
- Podolsky D. K., Weiser M. M. Role of cell membrane galactosyltransferase in concanavalin A agglutination of erythrocytes. Biochem J. 1975 Jan;146(1):213–221. doi: 10.1042/bj1460213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podolsky D. K., Weiser M. M., Westwood J. C., Gammon M. Cancer-associated serum galactosyltransferase activity. Demonstration in an animal model system. J Biol Chem. 1977 Mar 10;252(5):1807–1813. [PubMed] [Google Scholar]
- Roth S. A molecular model for cell interactions. Q Rev Biol. 1973 Dec;48(4):541–563. doi: 10.1086/407816. [DOI] [PubMed] [Google Scholar]
- Rudman D., Chawla R. K., Nixon D. W., Roler J. H., Shah V. R. Isolation of novel glycoprotein HNC1beta from the urine of a patient with acute monocytic leukemia. Cancer Res. 1978 Mar;38(3):602–607. [PubMed] [Google Scholar]
- Shur B. D., Roth S. Cell surface glycosyltransferases. Biochim Biophys Acta. 1975 Dec 29;415(4):473–512. doi: 10.1016/0304-4157(75)90007-6. [DOI] [PubMed] [Google Scholar]
- Sylvén B., Holmberg B. On the structure and biological effects of a newly-discovered cytotoxic polypeptide in tumor fluid. Eur J Cancer. 1965 Nov;1(3):199–202. doi: 10.1016/0014-2964(65)90049-6. [DOI] [PubMed] [Google Scholar]
- Van Nest G. A., Grimes W. J. A comparison of membrane components of normal and transformed BALB/c cells. Biochemistry. 1977 Jun 28;16(13):2902–2908. doi: 10.1021/bi00632a016. [DOI] [PubMed] [Google Scholar]
- Warren L., Fuhrer J. P., Buck C. A. Surface glycoproteins of normal and transformed cells: a difference determined by sialic acid and a growth-dependent sialyl transferase. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1838–1842. doi: 10.1073/pnas.69.7.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb G. C., Roth S. Cell contact dependence of surface galactosyltransferase activity as a function of the cell cycle. J Cell Biol. 1974 Dec;63(3):796–805. doi: 10.1083/jcb.63.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiser M. M., Podolsky D. K., Iselbacher K. J. Cancer-associated isoenzyme of serum galactosyltransferase. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1319–1322. doi: 10.1073/pnas.73.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zamcheck N. Carcinoembryonic antigen. Quantitative variations in circulating levels in benign and malignant digestive tract diseases. Adv Intern Med. 1974;19:413–433. [PubMed] [Google Scholar]


