Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Sep;75(9):4446–4450. doi: 10.1073/pnas.75.9.4446

Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster.

I Abraham, W W Doane
PMCID: PMC336132  PMID: 100784

Abstract

Laboratory strains of Drosophila melanogaster were screened for spatial variations in adult midgut alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) expression. No strain-specific differences were found anteriorly, but three patterns of activity were discerned in the posterior midgut: A, activity throughout most of the region; B, activity in the anterior part of the region; and C, little or no activity. Alleles of a control gene, map, are responsible for this tissue-specific regulation of activity; e.g., mapA homozygotes produce the A pattern and mapC homozygotes the C pattern. The map locus was placed at 2--80 +/- on the genetic map of chromosome 2R, about two crossover units distal to the Amy structural gene region for alpha-amylase. Electrophoretic studies showed that mapA is trans acting in mapA/mapC flies, allowing expression of amylase isozymes coded for by genes on the opposite chromosome. The map gene behaves as a temporal gene that is clearly separable from the tightly linked, duplicated Amy structural genes.

Full text

PDF
4446

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahn E. Crossing over in the chromosomal region determining amylase isozymes in Drosophila melanogaster. Hereditas. 1967;58(1):1–12. doi: 10.1111/j.1601-5223.1967.tb02138.x. [DOI] [PubMed] [Google Scholar]
  2. Bahn E. Cytogenetical localization of the amylase region in Drosophila melanogaster by means of translocations. Hereditas. 1972;67(1):75–78. doi: 10.1111/j.1601-5223.1971.tb02360.x. [DOI] [PubMed] [Google Scholar]
  3. Boubelík M., Lengerová A., Bailey D. W., Matousek V. A model for genetic analysis of programmed gene expression as reflected in the development of membrane antigens. Dev Biol. 1975 Nov;47(1):206–214. doi: 10.1016/0012-1606(75)90274-2. [DOI] [PubMed] [Google Scholar]
  4. Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
  5. Chovnick A., Gelbart W., McCarron M., Osmond B. Organization of the rosy locus in Drosophila melanogaster: evidence for a control element adjacent to the xanthine dehydrogenase structural element. Genetics. 1976 Oct;84(2):233–255. doi: 10.1093/genetics/84.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dickinson W. J. A genetic locus affecting the developmental expression of an enzyme in Drosophilia melanogaster. Dev Biol. 1975 Jan;42(1):131–140. doi: 10.1016/0012-1606(75)90319-x. [DOI] [PubMed] [Google Scholar]
  7. Dickinson W. J. Aldehyde oxidase in Drosophila melanogaster: a system for genetic studies on developmental regulation. Dev Biol. 1971 Sep;26(1):77–86. doi: 10.1016/0012-1606(71)90109-6. [DOI] [PubMed] [Google Scholar]
  8. Doane W. W. Quantitation of amylases in Drosophila separated by acrylamide gel electrophoresis. J Exp Zool. 1967 Apr;164(3):363–377. doi: 10.1002/jez.1401640307. [DOI] [PubMed] [Google Scholar]
  9. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  10. Judd B. H., Shen M. W., Kaufman T. C. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics. 1972 May;71(1):139–156. doi: 10.1093/genetics/71.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lefevre G., Jr The relationship between genes and polytene chromosome bands. Annu Rev Genet. 1974;8:51–62. doi: 10.1146/annurev.ge.08.120174.000411. [DOI] [PubMed] [Google Scholar]
  12. MCCLINTOCK B. Controlling elements and the gene. Cold Spring Harb Symp Quant Biol. 1956;21:197–216. doi: 10.1101/sqb.1956.021.01.017. [DOI] [PubMed] [Google Scholar]
  13. PAIGEN K. The genetic control of enzyme activity during differentiation. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1641–1649. doi: 10.1073/pnas.47.10.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paigen K., Meisler M., Felton J., Chapman V. Genetic determination of the beta-galactosidase developmental program in mouse liver. Cell. 1976 Dec;9(4 Pt 1):533–539. doi: 10.1016/0092-8674(76)90035-0. [DOI] [PubMed] [Google Scholar]
  15. Rawls J. M., Jr, Lucchesi J. C. Regulation of enzyme activities in Drosophila. I. The detection of regulatory loci by gene dosage responses. Genet Res. 1974 Aug;24(1):59–72. doi: 10.1017/s001667230001507x. [DOI] [PubMed] [Google Scholar]
  16. Schwartz D. Regulation of expression of Adh genes in maize. Proc Natl Acad Sci U S A. 1976 Feb;73(2):582–584. doi: 10.1073/pnas.73.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwartz D. Genetic Studies on Mutant Enzymes in Maize. III. Control of Gene Action in the Synthesis of Ph 7.5 Esterase. Genetics. 1962 Nov;47(11):1609–1615. doi: 10.1093/genetics/47.11.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES