Abstract
The ratio of the rate of transepithelial sodium transport, JNa, across the isolated toad urinary bladder to the simultaneously measured rate of transport-dependent metabolism, JsbCO2, has been measured as a function of the transepithelial electrical voltage, deltapsi. The ratio remains constant with a mean value of 18 to 20 over the range of imposed voltages of 0 to +70 mV. With increasing hyperpolarization of the bladder, JNa decreases and the calculated electromotive force or apparent "ENa" of the sodium pump increases. From thermodynamic and kinetic arguments it is shown that the apparent "ENa" approaches the maximal electrochemical potential gradient, ENa, against which sodium can be transported by this tissue only when JNa approximately 0. At this unique condition F ENa (in which F is the Faraday constant) is the maximal free energy of the chemical reaction driving sodium transport and thus equal to the maximal extramitochondrial phosphorylation potential and the maximal free energy of the mitochondrial respiratory chain within the transporting cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bentley P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J Physiol. 1968 Mar;195(2):317–330. doi: 10.1113/jphysiol.1968.sp008460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canessa M., Labarca P., Leaf A. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder. J Membr Biol. 1976 Dec 25;30(1):65–77. doi: 10.1007/BF01869660. [DOI] [PubMed] [Google Scholar]
- Civan M. M. Effects of active sodium transport on current-voltage relationship of toad bladder. Am J Physiol. 1970 Jul;219(1):234–245. doi: 10.1152/ajplegacy.1970.219.1.234. [DOI] [PubMed] [Google Scholar]
- Civan M. M., Kedem O., Leaf A. Effect of vasopressin on toad bladder under conditions of zero net sodium transport. Am J Physiol. 1966 Sep;211(3):569–575. doi: 10.1152/ajplegacy.1966.211.3.569. [DOI] [PubMed] [Google Scholar]
- Ehrlich E. N., Crabbé J. The mechanism of action of amipramizide. Pflugers Arch. 1968;302(1):79–96. doi: 10.1007/BF00586783. [DOI] [PubMed] [Google Scholar]
- Guynn R. W., Veech R. L. The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions. J Biol Chem. 1973 Oct 25;248(20):6966–6972. [PubMed] [Google Scholar]
- Higgins J. T., Jr, Gebler B., Frömter E. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile in necturus maculosus. Pflugers Arch. 1977 Oct 19;371(1-2):87–97. doi: 10.1007/BF00580776. [DOI] [PubMed] [Google Scholar]
- Holian A., Owen C. S., Wilson D. F. Control of respiration in isolated mitochondria: quantitative evaluation of the dependence of respiratory rates on [ATP], [ADP], and [Pi]. Arch Biochem Biophys. 1977 May;181(1):164–171. doi: 10.1016/0003-9861(77)90494-5. [DOI] [PubMed] [Google Scholar]
- Hong C. D., Essig A. Effects of 2-deoxy-D-glucose, amiloride, vasopressin, and ouabain on active conductance and ENa in the toad bladder. J Membr Biol. 1976 Aug 26;28(2-3):121–142. doi: 10.1007/BF01869693. [DOI] [PubMed] [Google Scholar]
- LEAF A., ANDERSON J., PAGE L. B. Active sodium transport by the isolated toad bladder. J Gen Physiol. 1958 Mar 20;41(4):657–668. doi: 10.1085/jgp.41.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labarca P., Canessa M., Leaf A. Metabolic cost of sodium transport in toad urinary bladder. J Membr Biol. 1977 Apr 22;32(3-4):383–401. doi: 10.1007/BF01905229. [DOI] [PubMed] [Google Scholar]
- Leaf A. Transepithelial transport and its hormonal control in toad bladder. Ergeb Physiol. 1965;56:216–263. [PubMed] [Google Scholar]
- Macknight A. D., Civan M. M., Leaf A. The sodium transport pool in toad urinary bladder epithelial cells. J Membr Biol. 1975;20(3-4):365–367. doi: 10.1007/BF01870644. [DOI] [PubMed] [Google Scholar]
- Maffly R. H. A conductometric method for measuring micromolar quantities of carbon dioxide. Anal Biochem. 1968 May;23(2):252–262. doi: 10.1016/0003-2697(68)90357-6. [DOI] [PubMed] [Google Scholar]
- Rick R., Dörge A., Macknight A. D., Leaf A., Thurau K. Electron microprobe analysis of the different epithelial cells of toad urinary bladder. Electrolyte concentrations at different functional states of transepithelial sodium transport. J Membr Biol. 1978 Mar 10;39(2-3):257–271. doi: 10.1007/BF01870334. [DOI] [PubMed] [Google Scholar]
- Slater E. C., Rosing J., Mol A. The phosphorylation potential generated by respiring mitochondria. Biochim Biophys Acta. 1973 Apr 5;292(3):534–553. doi: 10.1016/0005-2728(73)90003-0. [DOI] [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
- Wilson D. F., Stubbs M., Veech R. L., Erecińska M., Krebs H. A. Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem J. 1974 Apr;140(1):57–64. doi: 10.1042/bj1400057. [DOI] [PMC free article] [PubMed] [Google Scholar]
