Abstract
Neither of the two previously proposed secondary structures for eukaryotic 5.8S RNA is consistent with the present laser Raman results. A new, highly stable "cloverleaf" secondary structure not only fits the Raman data but also accounts for previously determined enzymatic partial cleavage patterns, base sequence and pairing homologies, and G-C and A-U base pair numbers and ratios. The new cloverleaf model also conserves several structural features (constant loops, bulges, and stems) consistent with known 5.8S RNA functions. Finally, we propose a similar new cloverleaf secondary structure for Escherichia coli 5S RNA, consonant with many known properties of prokaryotic 5S RNA.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen M. C., Giegé R., Lord R. C., Rich A. Raman spectra and structure of yeast phenylalanine transfer RNA in the crystalline state and in solution. Biochemistry. 1975 Oct 7;14(20):4385–4391. doi: 10.1021/bi00691a007. [DOI] [PubMed] [Google Scholar]
- Chen M. C., Thomas G. J., Jr Raman spectral studies of nucleic acids. XI. Conformations of yeast tRNAPhe and E. coli ribosomal RNA in aqueous solution and in the solid state. Biopolymers. 1974;13(3):615–626. doi: 10.1002/bip.1974.360130313. [DOI] [PubMed] [Google Scholar]
- Erdmann V. A. Structure and function of 5S and 5.8 S RNA. Prog Nucleic Acid Res Mol Biol. 1976;18:45–90. [PubMed] [Google Scholar]
- Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
- Holbrook S. R., Sussman J. L., Warrant R. W., Church G. M., Kim S. H. RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe. Nucleic Acids Res. 1977 Aug;4(8):2811–2820. doi: 10.1093/nar/4.8.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jack A., Ladner J. E., Rhodes D., Brown R. S., Klug A. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J Mol Biol. 1977 Apr 15;111(3):315–328. doi: 10.1016/s0022-2836(77)80054-5. [DOI] [PubMed] [Google Scholar]
- Kearns D. R., Wong Y. P. Investigation of the secondary structure of Escherichia coli 5 S RNA by high-resolution nuclear magnetic resonance. J Mol Biol. 1974 Aug 25;87(4):755–774. doi: 10.1016/0022-2836(74)90083-7. [DOI] [PubMed] [Google Scholar]
- Kim S. H. Three-dimensional structure of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1976;17:181–216. doi: 10.1016/s0079-6603(08)60070-7. [DOI] [PubMed] [Google Scholar]
- Lewis J. B., Doty P. Identification of the single-strand regions in Escherichia coli 5S RNA, native and A forms, by the binding of oligonucleotides. Biochemistry. 1977 Nov 15;16(23):5016–5025. doi: 10.1021/bi00642a012. [DOI] [PubMed] [Google Scholar]
- Madison J. T. Primary structure of RNA. Annu Rev Biochem. 1968;37:131–148. doi: 10.1146/annurev.bi.37.070168.001023. [DOI] [PubMed] [Google Scholar]
- Marshall A. G., Smith J. L. Nuclear-spin-labeled nucleic acids. 1 19F nuclear magnetic resonance of Escherchia coli 5-fluorouracil-5S-RNA. J Am Chem Soc. 1977 Jan 19;99(2):635–636. doi: 10.1021/ja00444a066. [DOI] [PubMed] [Google Scholar]
- Nazar R. N., Roy K. L. Nucleotide sequence of rainbow trout (Salmo gairdneri) ribosomal 5.8 S ribonucleic acid. J Biol Chem. 1978 Jan 25;253(2):395–399. [PubMed] [Google Scholar]
- Nazar R. N., Sitz T. O., Busch H. Sequence homologies in mammalian 5.8S ribosomal RNA. Biochemistry. 1976 Feb 10;15(3):505–508. doi: 10.1021/bi00648a008. [DOI] [PubMed] [Google Scholar]
- Nazar R. N., Sitz T. O., Busch H. Structural analyses of mammalian ribosomal ribonucleic acid and its precursors. Nucleotide sequence of ribosomal 5.8 S ribonucleic acid. J Biol Chem. 1975 Nov 25;250(22):8591–8597. [PubMed] [Google Scholar]
- Osterberg R., Sjöberg B., Garrett R. A. Molecular model for 5-S RNA. A small-angle x-ray scattering study of native, denatured and aggregated 5-S RNA from Escherichia coli ribosomes. Eur J Biochem. 1976 Sep 15;68(2):481–487. doi: 10.1111/j.1432-1033.1976.tb10835.x. [DOI] [PubMed] [Google Scholar]
- Pace N. R., Walker T. A., Schroeder E. Structure of the 5.8S RNA component of the 5.8S-28S ribosomal RNA junction complex. Biochemistry. 1977 Nov 29;16(24):5321–5328. doi: 10.1021/bi00643a025. [DOI] [PubMed] [Google Scholar]
- Pene J. J., Knight E., Jr, Darnell J. E., Jr Characterization of a new low molecular weight RNA in HeLa cell ribosomes. J Mol Biol. 1968 May 14;33(3):609–623. doi: 10.1016/0022-2836(68)90309-4. [DOI] [PubMed] [Google Scholar]
- Perry R. P. Processing of RNA. Annu Rev Biochem. 1976;45:605–629. doi: 10.1146/annurev.bi.45.070176.003133. [DOI] [PubMed] [Google Scholar]
- Pongs O., Bald R., Reinwald E. On the structure of yeast tRNA Phe . Complementary-oligonucleotide binding studies. Eur J Biochem. 1973 Jan 3;32(1):117–125. doi: 10.1111/j.1432-1033.1973.tb02586.x. [DOI] [PubMed] [Google Scholar]
- Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Correlation between three-dimensional structure and chemical reactivity of transfer RNA. Nucleic Acids Res. 1974 Jul;1(7):927–932. doi: 10.1093/nar/1.7.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin G. M. The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid. J Biol Chem. 1973 Jun 10;248(11):3860–3875. [PubMed] [Google Scholar]
- Thomas G. J., Jr, Chen M. C., Hartman K. A. Raman studies of nucleic acids. X. Conformational structures of Escherichia coli transfer RNAs in aqueous solution. Biochim Biophys Acta. 1973 Sep 28;324(1):37–49. doi: 10.1016/0005-2787(73)90248-7. [DOI] [PubMed] [Google Scholar]
- Thomas G. J., Jr, Hartman K. A. Raman studies of nucleic acids. 8. Estimation of RNA secondary structure from Raman scattering by phosphate-group vibrations. Biochim Biophys Acta. 1973 Jun 23;312(2):311–332. doi: 10.1016/0005-2787(73)90376-6. [DOI] [PubMed] [Google Scholar]
- Tinoco I., Jr, Uhlenbeck O. C., Levine M. D. Estimation of secondary structure in ribonucleic acids. Nature. 1971 Apr 9;230(5293):362–367. doi: 10.1038/230362a0. [DOI] [PubMed] [Google Scholar]
- Van N. T., Nazar R. N., Sitz T. O. Comparative studies on the secondary structure of eukaryotic 5.8S ribosomal RNA. Biochemistry. 1977 Aug 23;16(17):3754–3759. doi: 10.1021/bi00636a004. [DOI] [PubMed] [Google Scholar]
- Vigne R., Jordan B. R. Partial enzyme digestion studies on Escherichia coli, Pseudomonas, Chlorella, Drosophila, HeLa and yeast 5S RNAs support a general class of 5S RNA models. J Mol Evol. 1977 Sep 20;10(1):77–86. doi: 10.1007/BF01796136. [DOI] [PubMed] [Google Scholar]
- Woledge J., Corry M. J., Payne P. I. Ribosomal RNA homologies in flowering plants: comparison of the nucleotide sequences in 5.8-S rRNA from broad bean, dwarf bean, tomato, sunflower and rye. Biochim Biophys Acta. 1974 May 31;349(3):339–350. [PubMed] [Google Scholar]
- Wong Y. P., Kearns D. R., Reid B. R., Shulman R. G. The extent of base pairing in 5 s RNA. Yeast 5 s RNA. J Mol Biol. 1972 Dec 30;72(3):741–749. doi: 10.1016/0022-2836(72)90188-x. [DOI] [PubMed] [Google Scholar]
- Wrede P., Erdmann V. A. Escherichia coli 5S RNA binding proteins L18 and L25 interact with 5.8S RNA but not with 5S RNA from yeast ribosomes. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2706–2709. doi: 10.1073/pnas.74.7.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
