Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Oct;75(10):4972–4976. doi: 10.1073/pnas.75.10.4972

Coordinate control of corticotropin, β-lipotropin, and β-endorphin release in mouse pituitary cell cultures

Richard G Allen *, Edward Herbert *,, Michael Hinman *, Haruo Shibuya , Candace B Pert
PMCID: PMC336244  PMID: 217008

Abstract

Hypothalamic extract stimulates the release of corticotropin (ACTH) and endorphins 2.5- to 30-fold in mouse pituitary tumor cell cultures (AtT-20/D16v line) and primary cell cultures from mouse anterior pituitary. ACTH and endorphin activities were measured by radioimmunoassay and immunoprecipitation. Pretreatment of tumor cell cultures with 1 μM dexamethasone reduced the stimulatory effect of the extract on release of ACTH and endorphins. Pretreatment of primary cell cultures with 10-6 M dexamethasone reduced the stimulatory effect of both vasopressin and the extract on the release of ACTH and endorphins. Release of ACTH and endorphin was coupled in both kinds of cultures in the basal, stimulated, and inhibited states. The molecular weight forms of ACTH and endorphin in tumor cell culture medium were analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Radioimmunoassay and immunoprecipitation show that the 13,000-dalton and 4500-dalton forms of ACTH were present in about equal amounts in medium from cultures incubated with or without hypothalamic extract for 15 min, 30 min, or 2 hr. Smaller amounts of the high molecular weight forms of ACTH (20,000- to 23,000-dalton and 31,000-dalton ACTH) were observed in the culture medium at these times. The predominant forms of endorphin released after 20 min or 3 hr of incubation had molecular weights of 31,000, 11,700 (β-lipotropic hormone-size material) and 3500 (β-endorphin-size material). No degradation of the forms of endorphin released into the culture medium was observed after incubating the culture medium for 1.5 hr in the absence of cells. The proportions of the different forms of endorphin and ACTH present in the culture medium resembles that seen in cell extracts.

Keywords: radioimmunoassay, gel electrophoresis

Full text

PDF
4972

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Nicholson W. E., Liddle G. W., Island D. P., Orth D. N. Radioimmunoassay of beta-MSH in human plasma and tissues. J Clin Invest. 1967 Oct;46(10):1609–1616. doi: 10.1172/JCI105653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abe K., Nicholson W. E., Liddle G. W., Orth D. N., Island D. P. Normal and abnormal regulation of beta-msh in man. J Clin Invest. 1969 Aug;48(8):1580–1585. doi: 10.1172/JCI106123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Guillemin R., Ling N., Vargo T. Radioimmunoassays for alpha-endorphin and beta-endorphin. Biochem Biophys Res Commun. 1977 Jul 11;77(1):361–366. doi: 10.1016/s0006-291x(77)80205-2. [DOI] [PubMed] [Google Scholar]
  4. Guillemin R., Vargo T., Rossier J., Minick S., Ling N., Rivier C., Vale W., Bloom F. beta-Endorphin and adrenocorticotropin are selected concomitantly by the pituitary gland. Science. 1977 Sep 30;197(4311):1367–1369. doi: 10.1126/science.197601. [DOI] [PubMed] [Google Scholar]
  5. Herbert E., Allen R. G., Paquette T. L. Reversal of dexamethasone inhibition of adrenocorticotropin release in a mouse pituitary tumor cell line either by growing cells in the absence of dexamethasone or by addition of hypothalamic extract. Endocrinology. 1978 Jan;102(1):218–226. doi: 10.1210/endo-102-1-218. [DOI] [PubMed] [Google Scholar]
  6. Mains R. E., Eipper B. A. Biosynthesis of adrenocorticotropic hormone in mouse pituitary tumor cells. J Biol Chem. 1976 Jul 10;251(13):4115–4120. [PubMed] [Google Scholar]
  7. Mains R. E., Eipper B. A., Ling N. Common precursor to corticotropins and endorphins. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3014–3018. doi: 10.1073/pnas.74.7.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Redshaw M. R., Lynch S. S. An improved method for the preparation of iodinated antigens for radioimmunoassay. J Endocrinol. 1974 Mar;60(3):527–528. doi: 10.1677/joe.0.0600527. [DOI] [PubMed] [Google Scholar]
  9. Rees L. H., Cook D. M., Kendall J. W., Allen C. F., Kramer R. M., Ratcliffe J. G., Knight R. A. A radioimmunoassay for rat plasma ACTH. Endocrinology. 1971 Jul;89(1):254–261. doi: 10.1210/endo-89-1-254. [DOI] [PubMed] [Google Scholar]
  10. Roberts J. L., Herbert E. Characterization of a common precursor to corticotropin and beta-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4826–4830. doi: 10.1073/pnas.74.11.4826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Roberts J. L., Herbert E. Characterization of a common precursor to corticotropin and beta-lipotropin: identification of beta-lipotropin peptides and their arrangement relative to corticotropin in the precursor synthesized in a cell-free system. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5300–5304. doi: 10.1073/pnas.74.12.5300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Simantov R., Kuhar M. J., Uhl G. R., Snyder S. H. Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci U S A. 1977 May;74(5):2167–2171. doi: 10.1073/pnas.74.5.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vale W., Grant G., Amoss M., Blackwell R., Guillemin R. Culture of enzymatically dispersed pituitary cells: functional validation of a method. Endocrinology. 1972 Aug;91(2):562–572. doi: 10.1210/endo-91-2-562. [DOI] [PubMed] [Google Scholar]
  14. Vale W., River C. Substances modulating the secretion of ACTH by cultured anterior pituitary cells. Fed Proc. 1977 Jul;36(8):2094–2099. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES