Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Oct;75(10):5062–5065. doi: 10.1073/pnas.75.10.5062

Viscoelastic studies on Tetrahymena macronuclear DNA.

J B Williams, E W Fleck, L E Hellier, E Uhlenhopp
PMCID: PMC336263  PMID: 105362

Abstract

We have used viscoelastometry in an attempt to understand the physical organization of genetic material in Tetrahymena nuclei. The micronucleus or germ line nucleus is diploid. It divides mitotically during vegetative growth, and five pairs of chromosomes are seen in meiosis. The macronucleus, or somatic nucleus, is approximately 45-ploid, divides amitotically, and has no visible chromosomes at any stage. Viscoelastic analysis of Tetrahymena macronuclei reveals DNA Molecules of 2-3 X 10(10) daltons accounting for much, if not all, of the macronuclear DNA. Since the average chromosome in the micronucleus contains 2.4-2.7 X 10(10) daltons of DNA, we deduce that the macronucleus of Tetrahymena contains chromosome-sized DNA molecules.

Full text

PDF
5062

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruns P. J., Brussard T. B. Positive selection for mating with functional heterokaryons in Tetrahymena pyriformis. Genetics. 1974 Nov;78(3):831–841. doi: 10.1093/genetics/78.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doerder F. P., Lief J. H., Debault L. E. Macronuclear Subunits of Tetrahymena thermophila Are Functionally Haploid. Science. 1977 Dec 2;198(4320):946–948. doi: 10.1126/science.198.4320.946. [DOI] [PubMed] [Google Scholar]
  3. Doerder F. P. Regulatory Serotype Mutations in TETRAHYMENA PYRIFORMIS, Syngen 1. Genetics. 1973 May;74(1):81–106. doi: 10.1093/genetics/74.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gorovsky M. A. Macro- and micronuclei of Tetrahymena pyriformis: a model system for studying the structure and function of eukaryotic nuclei. J Protozool. 1973 Feb;20(1):19–25. doi: 10.1111/j.1550-7408.1973.tb05995.x. [DOI] [PubMed] [Google Scholar]
  5. Kavenoff R., Zimm B. H. Chromosome-sized DNA molecules from Drosophila. Chromosoma. 1973;41(1):1–27. doi: 10.1007/BF00284071. [DOI] [PubMed] [Google Scholar]
  6. Lange C. S., Liberman D. F., Clark R. W., Ferguson P., Sheck L. E. The organization and repair of DNA in the mammalian chromosome. III. Determination of the molecular weight of a mammalian native DNA. Biopolymers. 1977 May;16(5):1093–1014. doi: 10.1002/bip.1977.360160511. [DOI] [PubMed] [Google Scholar]
  7. Lauer G. D., Klotz L. C. Determination of the molecular weight of Saccharomyces cerevisiae nuclear DNA. J Mol Biol. 1975 Jun 25;95(2):309–326. doi: 10.1016/0022-2836(75)90397-6. [DOI] [PubMed] [Google Scholar]
  8. Nanney D. L., McCoy J. W. Characterization of the species of the Tetrahymena pyriformis complex. Trans Am Microsc Soc. 1976 Oct;95(4):664–682. [PubMed] [Google Scholar]
  9. Nilsson J. R. Suggestive structural evidence for macronuclear "subnuclei" in Tetrahymena pyriformis GL. J Protozool. 1970 Nov;17(4):539–548. doi: 10.1111/j.1550-7408.1970.tb04724.x. [DOI] [PubMed] [Google Scholar]
  10. Orias E. Alternative interpretation of the molecular structure and somatic genetics of acid phosphatase-1 in Tetrahymena pyriformis. Biochem Genet. 1973 May;9(1):87–90. doi: 10.1007/BF00485593. [DOI] [PubMed] [Google Scholar]
  11. Orias E., Flacks M. Macronuclear genetics of Tetrahymena. I. Random distribution of macronuclear genecopies in T. pyriformis, syngen 1. Genetics. 1975 Feb;79(2):187–206. doi: 10.1093/genetics/79.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Orias E., Flacks M. Use of genomic exclusion to isolate heat-sensitive mutants in Tetrahymena. Genetics. 1973 Apr;73(4):543–549. doi: 10.1093/genetics/73.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Petes T. D., Byers B., Fangman W. L. Size and structure of yeast chromosomal DNA. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3072–3076. doi: 10.1073/pnas.70.11.3072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Prescott D. M., Murti K. G., Bostock C. J. Genetic apparatus of Stylonychia sp. Nature. 1973 Apr 27;242(5400):576, 597-600. doi: 10.1038/242576a0. [DOI] [PubMed] [Google Scholar]
  15. Raikov I. B. Evolution of macronuclear organization. Annu Rev Genet. 1976;10:413–440. doi: 10.1146/annurev.ge.10.120176.002213. [DOI] [PubMed] [Google Scholar]
  16. Rinderknecht H., Geokas M. C., Silverman P., Haverback B. J. A new ultrasensitive method for the determination of proteolytic activity. Clin Chim Acta. 1968 Aug;21(2):197–203. doi: 10.1016/0009-8981(68)90127-7. [DOI] [PubMed] [Google Scholar]
  17. Roberts C. T., Jr, Orias E. Cytoplasmic inheritance of chloramphenicol resistance in tetrahymena. Genetics. 1973 Feb;73(2):259–272. doi: 10.1093/genetics/73.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roberts T. M., Lauer G. D., Klotz L. C. Physical studies on DNA from "primitive" eucaryotes. CRC Crit Rev Biochem. 1975;3(4):349–449. [PubMed] [Google Scholar]
  19. Uhlenhopp E. L., Zimm B. H., Cummings D. J. Structural aberrations in T-even bacteriophage. VI. Molecular weight of DNA from giant heads. J Mol Biol. 1974 Nov 15;89(4):689–702. doi: 10.1016/0022-2836(74)90045-x. [DOI] [PubMed] [Google Scholar]
  20. Woodard J., Kaneshiro E., Gorovsky M. A. Cytochemical studies on the problem of macronuclear subnuclei in tetrahymena. Genetics. 1972 Feb;70(2):251–260. doi: 10.1093/genetics/70.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yao M. C., Gorovsky M. A. Comparison of the sequences of macro- and micronuclear DNA of Tetrahymena pyriformis. Chromosoma. 1974;48(1):1–18. doi: 10.1007/BF00284863. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES