Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Oct;75(10):5108–5112. doi: 10.1073/pnas.75.10.5108

Sequence variability of immunoglobulins considered from the standpoint of population genetics*

Tomoko Ohta 1
PMCID: PMC336273  PMID: 16592584

Abstract

The probability of gene identity between members of a multigene family was investigated, assuming mutation, random genetic drift, and unequal crossing-over. The theoretical results on the equilibrium and transient behavior of the identity probability were applied to the analyses of sequence variability in the variable regions of immunoglobulins. The probability of amino acid identity between corresponding residue sites at different but homologous immunoglobulin sequences was computed both within and between species from data reported by other workers. The average probability of amino acid identity was obtained for the hypervariable regions and also for the framework regions. From statistical analyses based on population genetics theory it is concluded that somatic mutations cannot be the major cause of hypervariability and that the results can readily be explained by the germ line theory.

Keywords: repeated gene diversity, molecular evolution, germ line theory

Full text

PDF
5108

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capra J. D., Edmundson A. B. The antibody combining site. Sci Am. 1977 Jan;236(1):50–59. doi: 10.1038/scientificamerican0177-50. [DOI] [PubMed] [Google Scholar]
  2. Grunstein M., Schedl P., Kedes L. Sequence analysis and evolution of sea urchin (Lytechinus pictus and Strongylocentrotus purpuratus) histone H4 messenger RNAs. J Mol Biol. 1976 Jun 25;104(2):351–369. doi: 10.1016/0022-2836(76)90276-x. [DOI] [PubMed] [Google Scholar]
  3. Hood L., Campbell J. H., Elgin S. C. The organization, expression, and evolution of antibody genes and other multigene families. Annu Rev Genet. 1975;9:305–353. doi: 10.1146/annurev.ge.09.120175.001513. [DOI] [PubMed] [Google Scholar]
  4. KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. doi: 10.1038/217624a0. [DOI] [PubMed] [Google Scholar]
  6. Kimura M., Ohta T. Protein polymorphism as a phase of molecular evolution. Nature. 1971 Feb 12;229(5285):467–469. doi: 10.1038/229467a0. [DOI] [PubMed] [Google Scholar]
  7. Kimura M., Ota T. On the stochastic model for estimation of mutational distance between homologous proteins. J Mol Evol. 1972 Dec 29;2(1):87–90. doi: 10.1007/BF01653945. [DOI] [PubMed] [Google Scholar]
  8. Leder P., Honjo T., Seidman J., Swan D. Origin of immunoglobulin gene diversity: the evidence and a restriction-modification model. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):855–862. doi: 10.1101/sqb.1977.041.01.095. [DOI] [PubMed] [Google Scholar]
  9. Ohta T. Genetic variation in multigene families. Nature. 1977 Jun 9;267(5611):515–517. doi: 10.1038/267515a0. [DOI] [PubMed] [Google Scholar]
  10. Ohta T. Simple model for treating evolution of multigene families. Nature. 1976 Sep 2;263(5572):74–76. doi: 10.1038/263074a0. [DOI] [PubMed] [Google Scholar]
  11. Ohta T. Theoretical population genetics of repeated genes forming a multigene family. Genetics. 1978 Apr;88(4):845–861. doi: 10.1093/genetics/88.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Salser W., Bowen S., Browne D., el-Adli F., Fedoroff N., Fry K., Heindell H., Paddock G., Poon R., Wallace B. Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed Proc. 1976 Jan;35(1):23–35. [PubMed] [Google Scholar]
  13. Smith G. P. Unequal crossover and the evolution of multigene families. Cold Spring Harb Symp Quant Biol. 1974;38:507–513. doi: 10.1101/sqb.1974.038.01.055. [DOI] [PubMed] [Google Scholar]
  14. Tonegawa S., Hozumi N., Matthyssens G., Schuller R. Somatic changes in the content and context of immunoglobulin genes. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):877–889. doi: 10.1101/sqb.1977.041.01.097. [DOI] [PubMed] [Google Scholar]
  15. Tonegawa S., Steinberg C., Dube S., Bernardini A. Evidence for somatic generation of antibody diversity. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4027–4031. doi: 10.1073/pnas.71.10.4027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weigert M., Riblet R. Genetic control of antibody variable regions. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):837–846. doi: 10.1101/sqb.1977.041.01.093. [DOI] [PubMed] [Google Scholar]
  17. Wu T. T., Kabat E. A. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. 1970 Aug 1;132(2):211–250. doi: 10.1084/jem.132.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES