Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1988 Mar 25;16(6):2461–2472. doi: 10.1093/nar/16.6.2461

Expression of the rpl23, rpl2 and rps19 genes in spinach chloroplasts.

F Thomas 1, O Massenet 1, A M Dorne 1, J F Briat 1, R Mache 1
PMCID: PMC336383  PMID: 3362671

Abstract

The expression of the spinach rpl23, rpl2 and rps19 chloroplast genes has been studied. The rpl23 gene identified in tobacco and Marchantia, is split into two overlapping reading frames in spinach. S1 mapping has shown that initiation sites could occur upstream of each reading frames. A large transcription unit is also present covering the rpl2 and rps19 genes. The rps19 and rpl2 gene products are identified by NH2-terminal amino acid sequences. They correspond to spinach chloroplast ribosomal proteins CS-S23 and CS-L4, respectively. No product of the rpl23 gene was detected in the chloroplast 50S ribosomal subunit. This strongly suggest that a corresponding gene has been transfered into the nucleus.

Full text

PDF
2461

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dorne A. M., Eneas-Filho J., Heizmann P., Mache R. Comparison of ribosomal proteins of chloroplast from spinach and of E. coli. Mol Gen Genet. 1984;193(1):129–134. doi: 10.1007/BF00327425. [DOI] [PubMed] [Google Scholar]
  3. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  4. Lescure A. M., Bisanz-Seyer C., Pesey H., Mache R. In vitro transcription initiation of the spinach chloroplast 16S rRNA gene at two tandem promoters. Nucleic Acids Res. 1985 Dec 20;13(24):8787–8796. doi: 10.1093/nar/13.24.8787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Link G., Langridge U. Structure of the chloroplast gene for the precursor of the Mr 32,000 photosystem II protein from mustard (Sinapis alba L.). Nucleic Acids Res. 1984 Jan 25;12(2):945–958. doi: 10.1093/nar/12.2.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Madjar J. J., Michel S., Cozzone A. J., Reboud J. P. A method to identify individual proteins in four different two-dimensional gel electrophoresis systems: application to Escherichia coli ribosomal proteins. Anal Biochem. 1979 Jan 1;92(1):174–182. doi: 10.1016/0003-2697(79)90641-9. [DOI] [PubMed] [Google Scholar]
  7. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tanaka M., Wakasugi T., Sugita M., Shinozaki K., Sugiura M. Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): similarity to the S10 and spc operons of Escherichia coli. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6030–6034. doi: 10.1073/pnas.83.16.6030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zurawski G., Bottomley W., Whitfeld P. R. Junctions of the large single copy region and the inverted repeats in Spinacia oleracea and Nicotiana debneyi chloroplast DNA: sequence of the genes for tRNAHis and the ribosomal proteins S19 and L2. Nucleic Acids Res. 1984 Aug 24;12(16):6547–6558. doi: 10.1093/nar/12.16.6547. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES