Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1988 Apr 25;16(8):3283–3296. doi: 10.1093/nar/16.8.3283

Construction of a yeast mutant lacking the mitochondrial nuclease.

H P Zassenhaus 1, T J Hofmann 1, R Uthayashanker 1, R D Vincent 1, M Zona 1
PMCID: PMC336494  PMID: 2836791

Abstract

The nuclear gene from Saccharomyces cerevisiae that encodes the major mitochondrial nuclease was cloned. Gene sequences were identified from a lambda gt11 library by antibodies specific to the mitochondrial nuclease. DNA from the phage recombinant was used to isolate the entire nuclease gene from a plasmid library. Yeast strains containing the nuclease gene on a multicopy plasmid vector overproduced mitochondrial nuclease 20-40 times relative to a wild-type strain. Strains containing a null allele of the nuclease gene lacked all traces of mitochondrial nuclease. Both cell types, however, were phenotypically wild-type indicating that the nuclease is not an essential enzyme for mitochondrial function. The locus encoding the mitochondrial nuclease is termed NUC1.

Full text

PDF
3283

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  2. Birky C. W., Jr Effects of glucose repression of the transmission and recombination of mitochondrial genes in yeast (Saccharomyces cerevisiae). Genetics. 1975 Aug;80(4):695–709. doi: 10.1093/genetics/80.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  4. Chow T. Y., Fraser M. J. Purification and properties of single strand DNA-binding endo-exonuclease of Neurospora crassa. J Biol Chem. 1983 Oct 10;258(19):12010–12018. [PubMed] [Google Scholar]
  5. Cummings O. W., King T. C., Holden J. A., Low R. L. Purification and characterization of the potent endonuclease in extracts of bovine heart mitochondria. J Biol Chem. 1987 Feb 15;262(5):2005–2015. [PubMed] [Google Scholar]
  6. Fraser M. J., Chow T. Y., Cohen H., Koa H. An immunochemical study of Neurospora nucleases. Biochem Cell Biol. 1986 Feb;64(2):106–116. doi: 10.1139/o86-018. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Low R. L., Cummings O. W., King T. C. The bovine mitochondrial endonuclease prefers a conserved sequence in the displacement loop region of mitochondrial DNA. J Biol Chem. 1987 Nov 25;262(33):16164–16170. [PubMed] [Google Scholar]
  9. Nasmyth K. A., Tatchell K. The structure of transposable yeast mating type loci. Cell. 1980 Mar;19(3):753–764. doi: 10.1016/s0092-8674(80)80051-1. [DOI] [PubMed] [Google Scholar]
  10. Ramotar D., Auchincloss A. H., Fraser M. J. Nuclear endo-exonuclease of Neurospora crassa. Evidence for a role in DNA repair. J Biol Chem. 1987 Jan 5;262(1):425–431. [PubMed] [Google Scholar]
  11. Reeves H. C., Heeren R., Malloy P. Enzyme purification using antibody crosslinked to protein A agarose: application to Escherichia coli NADP-isocitrate dehydrogenase. Anal Biochem. 1981 Jul 15;115(1):194–196. doi: 10.1016/0003-2697(81)90545-5. [DOI] [PubMed] [Google Scholar]
  12. Rosamond J. Purification and properties of an endonuclease from the mitochondrion of Saccharomyces cerevisiae. Eur J Biochem. 1981 Dec;120(3):541–546. doi: 10.1111/j.1432-1033.1981.tb05734.x. [DOI] [PubMed] [Google Scholar]
  13. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  14. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  15. Winston F., Chumley F., Fink G. R. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 1983;101:211–228. doi: 10.1016/0076-6879(83)01016-2. [DOI] [PubMed] [Google Scholar]
  16. Zassenhaus H. P., Butow R. A., Hannon Y. P. Rapid electroelution of nucleic acids from agarose and acrylamide gels. Anal Biochem. 1982 Sep 1;125(1):125–130. doi: 10.1016/0003-2697(82)90392-x. [DOI] [PubMed] [Google Scholar]
  17. von Tigerstrom R. G. Purification and characteristics of a mitochondrial endonuclease from the yeast Saccharomyces cerevisiae. Biochemistry. 1982 Dec 7;21(25):6397–6403. doi: 10.1021/bi00268a012. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES