Abstract
The 5' and 3' structure of a Drosophila tRNA(Val3b) gene was investigated to examine the defect which caused the extremely low in vitro transcription template activity of the gene. Recombinant genes were constructed linking 5' and 3' flanking regions from tRNA genes which were active in vitro templates (tRNA(Val4), tRNA(Arg), tRNA(Ser7)) to the tRNA(Val3b) gene. None of the recombinant genes were effective in vitro templates. The defect in tRNA(Val3b) was demonstrated to reside in the 5' flanking region of the gene and deletion analysis indicated that no specific transcription inhibitor sequence was present 5' to the gene. The data suggest that the effect of 5' flanking sequences on in vitro transcription of the tRNA(Val3b) gene requires a specific relationship between the tRNA gene and the flanking sequence.
Full text
PDF
















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burke D. J., Söll D. Functional analysis of fractionated Drosophila Kc cell tRNA gene transcription components. J Biol Chem. 1985 Jan 25;260(2):816–823. [PubMed] [Google Scholar]
- Cooley L., Schaack J., Burke D. J., Thomas B., Söll D. Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene. Mol Cell Biol. 1984 Dec;4(12):2714–2722. doi: 10.1128/mcb.4.12.2714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cribbs D. L., Leung J., Newton C. H., Hayashi S., Miller R. C., Jr, Tener G. M. Extensive microheterogeneity of serine tRNA genes from Drosophila melanogaster. J Mol Biol. 1987 Oct 5;197(3):397–404. doi: 10.1016/0022-2836(87)90553-5. [DOI] [PubMed] [Google Scholar]
- DeFranco D., Schmidt O., Söll D. Two control regions for eukaryotic tRNA gene transcription. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3365–3368. doi: 10.1073/pnas.77.6.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dingermann T., Burke D. J., Sharp S., Schaack J., Söll D. The 5- flanking sequences of Drosophila tRNAArg genes control their in vitro transcription in a Drosophila cell extract. J Biol Chem. 1982 Dec 25;257(24):14738–14744. [PubMed] [Google Scholar]
- Dunn R., Delaney A. D., Gillam I. C., Hayashi S., Tener G. M., Grigliatti T., Misra V., Spurr M. G., Taylor D. M., Miller R. C., Jr Isolation and characterization of recombinant DNA plasmids carrying Drosophila tRNA genes. Gene. 1979 Nov;7(3-4):197–215. doi: 10.1016/0378-1119(79)90046-5. [DOI] [PubMed] [Google Scholar]
- Fowlkes D. M., Shenk T. Transcriptional control regions of the adenovirus VAI RNA gene. Cell. 1980 Nov;22(2 Pt 2):405–413. doi: 10.1016/0092-8674(80)90351-7. [DOI] [PubMed] [Google Scholar]
- Glew L., Lo R., Reece T., Nichols M., Söll D., Bell J. The nucleotide sequence, localization and transcriptional properties of a tRNALeuCUG gene from Drosophila melanogaster. Gene. 1986;44(2-3):307–314. doi: 10.1016/0378-1119(86)90195-2. [DOI] [PubMed] [Google Scholar]
- Gutierrez-Hartmann A., Baxter J. D. Differential ability of various plasmid DNAs to sequester inhibitors of RNA polymerase III transcription. DNA. 1987 Jun;6(3):231–237. doi: 10.1089/dna.1987.6.231. [DOI] [PubMed] [Google Scholar]
- Hayashi S., Gillam I. C., Delaney A. D., Dunn R., Tener G. M., Grigliatti T. A., Suzuki D. T. Hybridization of tRNAs of Drosophila melanogaster to polytene chromosomes. Chromosoma. 1980;76(1):65–84. doi: 10.1007/BF00292227. [DOI] [PubMed] [Google Scholar]
- Hipskind R. A., Clarkson S. G. 5'-flanking sequences that inhibit in vitro transcription of a xenopus laevis tRNA gene. Cell. 1983 Oct;34(3):881–890. doi: 10.1016/0092-8674(83)90545-7. [DOI] [PubMed] [Google Scholar]
- Larsen T. M., Miller R. C., Jr, Spiegelman G. B., Hayashi S., Tener G. M., Sinclair D. A., Grigliatti T. A. RNA-DNA hybridization analyses of tRNA-Val-3b in Drosophila melanogaster. Mol Gen Genet. 1982;185(3):390–396. doi: 10.1007/BF00334129. [DOI] [PubMed] [Google Scholar]
- Lassar A. B., Martin P. L., Roeder R. G. Transcription of class III genes: formation of preinitiation complexes. Science. 1983 Nov 18;222(4625):740–748. doi: 10.1126/science.6356356. [DOI] [PubMed] [Google Scholar]
- Leung J., Addison W. R., Delaney A. D., MacKay R. M., Miller R. C., Jr, Spiegelman G. B., Grigliatti T. A., Tener G. M. Drosophila melanogaster tRNAVal3b genes and their allogenes. Gene. 1985;34(2-3):207–217. doi: 10.1016/0378-1119(85)90129-5. [DOI] [PubMed] [Google Scholar]
- Lofquist A., Sharp S. The 5'-flanking sequences of Drosophila melanogaster tRNA5Asn genes differentially arrest RNA polymerase III. J Biol Chem. 1986 Nov 5;261(31):14600–14606. [PubMed] [Google Scholar]
- Louis D. S., Spiegelman G. B. Steady-state kinetic analysis of transcription of cloned tRNASer genes from Drosophila melanogaster. Eur J Biochem. 1985 Apr 15;148(2):305–313. doi: 10.1111/j.1432-1033.1985.tb08840.x. [DOI] [PubMed] [Google Scholar]
- Peden K. W. Revised sequence of the tetracycline-resistance gene of pBR322. Gene. 1983 May-Jun;22(2-3):277–280. doi: 10.1016/0378-1119(83)90112-9. [DOI] [PubMed] [Google Scholar]
- Rajput B., Duncan L., DeMille D., Miller R. C., Jr, Spiegelman G. B. Transcription of cloned transfer RNA genes from Drosophila melanogaster in a homologous cell-free extract. Nucleic Acids Res. 1982 Oct 25;10(20):6541–6550. doi: 10.1093/nar/10.20.6541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymond G. J., Johnson J. D. The 5'-flanking sequence of yeast tRNA(Leu3) genes enhances the rate of transcription from stable pre-initiation complexes. Nucleic Acids Res. 1987 Dec 10;15(23):9881–9894. doi: 10.1093/nar/15.23.9881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymond G. J., Johnson J. D. The role of non-coding DNA sequences in transcription and processing of a yeast tRNA. Nucleic Acids Res. 1983 Sep 10;11(17):5969–5988. doi: 10.1093/nar/11.17.5969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sajjadi F. G., Spiegelman G. B. Modulation of a Drosophila melanogaster tRNA gene transcription in vitro by a sequence TNNCT in its 5' flank. Gene. 1987;60(1):13–19. doi: 10.1016/0378-1119(87)90208-3. [DOI] [PubMed] [Google Scholar]
- Schaack J., Sharp S., Dingermann T., Burke D. J., Cooley L., Söll D. The extent of a eukaryotic tRNA gene. 5'- and 3'-flanking sequence dependence for transcription and stable complex formation. J Biol Chem. 1984 Feb 10;259(3):1461–1467. [PubMed] [Google Scholar]
- Schaack J., Sharp S., Dingermann T., Söll D. Transcription of eukaryotic tRNA genes in vitro. II. Formation of stable complexes. J Biol Chem. 1983 Feb 25;258(4):2447–2453. [PubMed] [Google Scholar]
- Schaack J., Söll D. Transcription of a Drosophila tRNAArg gene in yeast extract: 5'-flanking sequence dependence for transcription in a heterologous system. Nucleic Acids Res. 1985 Apr 25;13(8):2803–2814. doi: 10.1093/nar/13.8.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp S. J., Schaack J., Cooley L., Burke D. J., Söll D. Structure and transcription of eukaryotic tRNA genes. CRC Crit Rev Biochem. 1985;19(2):107–144. doi: 10.3109/10409238509082541. [DOI] [PubMed] [Google Scholar]
- Sharp S., Dingermann T., Schaack J., DeFranco D., Söll D. Transcription of eukaryotic tRNA genes in vitro. I. Analysis of control regions using a competition assay. J Biol Chem. 1983 Feb 25;258(4):2440–2446. [PubMed] [Google Scholar]
- Shaw K. J., Olson M. V. Effects of altered 5'-flanking sequences on the in vivo expression of a Saccharomyces cerevisiae tRNATyr gene. Mol Cell Biol. 1984 Apr;4(4):657–665. doi: 10.1128/mcb.4.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprague K. U., Larson D., Morton D. 5' flanking sequence signals are required for activity of silkworm alanine tRNA genes in homologous in vitro transcription systems. Cell. 1980 Nov;22(1 Pt 1):171–178. doi: 10.1016/0092-8674(80)90165-8. [DOI] [PubMed] [Google Scholar]
- Wilson E. T., Larson D., Young L. S., Sprague K. U. A large region controls tRNA gene transcription. J Mol Biol. 1985 May 25;183(2):153–163. doi: 10.1016/0022-2836(85)90209-8. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

