Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
. 2005 Oct;11(10):1515–1521. doi: 10.3201/eid1110.050644

Evolution of H5N1 Avian Influenza Viruses in Asia

The World Health Organization Global Influenza Program Surveillance Network
PMCID: PMC3366754  PMID: 16318689

Human infections were from a virus clade undergoing antigenic drift that showed resistance to adamantanes but sensitivity to neuraminidase inhibitors.

Keywords: Influenza, Influenza A Virus, Avian, hemagglutinin, NA protein, M2 protein, molecular Evolution, Phylogeny, virology, Influenza Vaccines, Adamantane, Oseltamivir, research

Abstract

An outbreak of highly pathogenic avian influenza A (H5N1) has recently spread to poultry in 9 Asian countries. H5N1 infections have caused >52 human deaths in Vietnam, Thailand, and Cambodia from January 2004 to April 2005. Genomic analyses of H5N1 isolates from birds and humans showed 2 distinct clades with a nonoverlapping geographic distribution. All the viral genes were of avian influenza origin, which indicates absence of reassortment with human influenza viruses. All human H5N1 isolates tested belonged to a single clade and were resistant to the adamantane drugs but sensitive to neuraminidase inhibitors. Most H5N1 isolates from humans were antigenically homogeneous and distinct from avian viruses circulating before the end of 2003. Some 2005 isolates showed evidence of antigenic drift. An updated nonpathogenic H5N1 reference virus, lacking the polybasic cleavage site in the hemagglutinin gene, was produced by reverse genetics in anticipation of the possible need to vaccinate humans.


Highly pathogenic avian influenza viruses of the H5N1 subtype are circulating in eastern Asia with unprecedented epizootic and epidemic effects (1). Nine Asian countries reported H5N1 outbreaks in poultry in 2004: Cambodia, China, Indonesia, Japan, Laos, Malaysia, South Korea, Thailand, and Vietnam (1). Between 2004 and the first 3 months of 2005, a total of 89 laboratory-confirmed human infections, 52 of which were fatal, were reported to the World Health Organization (WHO) by public health authorities in Vietnam, Thailand, and Cambodia. These records indicate that this outbreak of human H5N1 infections is the largest documented since its emergence in humans in 1997 (2). Efficient viral transmission among poultry caused the virus to spread regionally, leading to the loss of >100 million birds from disease and culling. In contrast, human-to-human transmission of the virus is exceptional but has been described, most recently in a family cluster in Thailand (3).

The 3 viral envelope proteins of influenza A virus are most medically relevant. The hemagglutinin (HA), neuraminidase (NA), and M2 are essential viral proteins targeted by host antibodies or antiviral drugs such as oseltamivir and rimantadine (46). The HA glycoprotein forms spikes at the surface of virions, mediating attachment to host cell sialoside receptors and subsequent entry by membrane fusion. The NA forms knoblike structures on the surface of virus particles and catalyzes their release from infected cells, allowing virus spread. The M2 is a transmembrane protein that forms an ion channel required for the uncoating process that precedes viral gene expression.

We report on phylogenetic, phenotypic, and antigenic analysis of H5N1 viruses from the 2004–2005 outbreak, focusing on these 3 genes, to address questions relevant to the public health response to the outbreak: 1) What is the genetic diversity of H5N1 viruses involved in human infections? 2) Can the relationship between human and avian H5N1 isolates help explain the source of infection? 3) Do genetic changes correlate with enhanced viral transmissibility in humans? 4) How sensitive are H5N1 isolates to antiviral drugs? 5) What is the antigenic similarity between human H5N1 viruses and current candidate vaccines? and 6) Can candidate vaccine reference stocks be developed in time for an effective public health response?

Methods

All work involving infectious H5N1 influenza was performed in government-approved biosafety level 3–enhanced containment facilities with experimental protocols in compliance with applicable federal statutes and institutional guidelines. Influenza A (H5N1) viruses isolated in Asia and A/Puerto Rico/8/34 (PR8) (H1N1) were propagated in embryonated chicken eggs or in Madin-Darby canine kidney (MDCK) cells. The African green monkey kidney Vero cell line was from a cell bank certified for human vaccine production.

Viral RNA was extracted by using a commercial lysis solution and resin kit and amplified by reverse transcriptase–polymerase chain reaction with specific oligonucleotide primers. Nucleotide sequencing reactions were performed with a cycle sequencing kit and resolved on an ABI 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). DNA sequence analysis was performed by using version 10 of the GCG sequence analysis package (7), and phylogeny was inferred by using a neighbor-joining tree reconstruction method implemented in the Phylip package (8).

Postinfection ferret antisera were prepared as previously described (9). Hemagglutination inhibition (HI) testing was performed as previously described with turkey erythrocytes (10).

Median inhibitory concentration (IC50) values for oseltamivir and zanamivir were determined by using NA-Star substrate and Light Emission Accelerator IITM (Applied Biosystems, Bedford, MA, USA) as previously described (11). Biological susceptibility to rimantadine was determined by recording the yield of viral progeny in MDCK cells infected with the H5N1 strains of interest at a multiplicity of >10 median egg infectious doses in the absence or presence of 2 μg/mL rimantadine.

Plasmids with full-length cDNA from the 6 internal genes (PB1, PB2, PA, NP, M, NS) of influenza virus PR8 strain (12), flanked by human RNA polymerase I (PolI) promoter and polyadenylation site at the 3´ end and a PolI terminator as well as a PolII promoter at the 5´ end, were generated as described previously (1214). The cDNA of N1 NA or H5 HA genes of VN/1203/2004 or VN/1194/2004 (VN/04-like) were inserted into plasmids as described above. The 4 basic amino acid codons from the cleavage site of HA were deleted by overlap extension PCR, as described previously (sequences available upon request) (13,1517).

PR8 reassortant viruses with HA and NA from VN/04-like viruses were generated by plasmid DNA-based reverse genetics in Vero cell under good laboratory practice conditions appropriate for future human use. Candidate vaccine reference reagent reassortant viruses were generated at the National Institute of Biological Standards and Control (NIBSC), South Mimms, United Kingdom; Saint Jude Children's Research Hospital (SJCRH), Memphis, Tennessee, USA; and Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. For brevity, the reverse genetics derivation method described represents a consensus of the institutions; minor unpublished protocol details unique to each laboratory were not described and are available upon request. The VN/04x/PR8 reassortant virus was recovered in embryonated eggs and identified in the allantoic fluid by HA assay. The genetic and antigenic properties of the resulting reassortant virus were determined as described previously (15,1820). Candidate vaccine stocks were subjected to virulence studies in avian, murine, and ferret models to establish their safety (19).

Results

Analysis of HA, NA, and M2 Genes from H5N1 Viruses

Phylogenetic analyses of the H5 HA genes from the 2004 and 2005 outbreak showed 2 different lineages of HA genes, termed clades 1 and 2. Viruses in each of these clades are distributed in nonoverlapping geographic regions of Asia (Figure 1). The H5N1 viruses from the Indochina peninsula are tightly clustered within clade 1, whereas H5N1 isolates from several surrounding countries are distinct from clade 1 isolates and belong in the more divergent clade 2. Clade 1 H5N1 viruses were isolated from humans and birds in Vietnam, Thailand, and Cambodia but only from birds in Laos and Malaysia. The clade 2 viruses were found in viruses isolated exclusively from birds in China, Indonesia, Japan, and South Korea. Viruses isolated from birds and humans in Hong Kong in 2003 and 1997 made up clades 1´ and 3, respectively.

Figure 1.

Figure 1

Phylogenetic relationships among H5 hemagglutinin (HA) genes from H5N1 avian influenza viruses and their geographic distribution. Viral isolates collected before and during the 2004–2005 outbreak in Asia and selected ancestors were included in the analysis (Table A1). HA clades 1, 1′, and 2, discussed in the text, are colored in blue, red, and green fonts, respectively. Virus names in boldface denote isolates from human infections. Phylogenetic trees were inferred from nucleotide sequences by the neighbor-joining method with A/chicken/Scotland/56 genes as outgroup (not shown, denoted by arrowhead). Bootstrap analysis values >90% are shown. A) HA gene tree phylogeny was based on the coding region of the segment. Presence of a motif for glycosylation in HA is indicated as A156T by an arrow at the root of clade 1 and a diamond for other clades (Table 1). Stars denote absence of 1 arginine residue at the polybasic cleavage site, which starts at position 325 of HA1. Isolates to which ferret antisera were made for antigenic analyses are boxed (Table 2). B) Geographic distribution of H5N1 in east Asia: blue denotes countries reporting infections with clade 1 H5N1 in humans and birds (solid) or in birds only (hatched). Green denotes countries reporting bird infections with clade 2 H5N1 viruses.

The HA genes from H5N1 viruses isolated from human specimens were closely related to HA genes from H5N1 viruses of avian origin; human HA gene sequences differ from the nearest gene from avian isolates from the same year in 2–14 nucleotides (<1% divergence). These findings are consistent with the epidemiologic data that suggest that humans acquired their infections by direct or indirect contact with poultry or poultry products (21).

Analysis of the amino acid sequences showed that both clades of H5 HAs from the 2004–2005 outbreak have a multiple basic amino acid motif at the cleavage site, a defining feature of highly pathogenic avian influenza viruses. Among all H5N1 isolates collected in east Asia since 1997, only those in clades 1, 1´, and 3 appear to be associated with fatal human infections (22,23). We compared amino acid sequences of HA from contemporary isolates (clades 1 and 2) with those of the fatal H5N1 infections in Hong Kong in 1997 and 2003 to identify changes that may correlate with patterns of human infection (Table 1). Thirteen polymorphic sites were identified when the HA1 from the 4 consensus sequences were compared. One change in the 2004–2005 viruses is serine 129 to leucine (S129L). This change affects receptor binding because S129 makes atomic contact with cellular sialoside receptors (24). A second structural change in HA was the A156T substitution, which resulted in glycosylation of asparagine 154 and is predicted to reduce its affinity for sialosides. This change is commonly associated with viral adaptation to terrestrial poultry and increased virulence for these birds (2527).

Table 1. Amino acid differences among H5 hemagglutinins (HA1).

Clade 3 Clade 2 Clade 1´ Clade 1 H3 No. Functional significance
N45* D D D 54† Antigenic site C
S84 N N N 92 Antigenic site E
A86 A A V 93 Antigenic site E
N94 D D D (1) 101 Near Y91; receptor binding?
N124 D S S 129 Antigenic site B
S129 S L L 133a Receptor binding
L138 Q Q Q 142 Antigenic site A
S155 N155 159 Antigenic site B
T156‡ A A T 160 N154 glycosylation motif
L175 L L L (2) 179 Near H179; receptor binding?
T188 T T T (3) 192 Near L190; receptor binding?
K189 R R K 193 Adjacent to receptor binding, antigenic site B
E212 K K R 216 Antigenic site D
S223 N223§ – (4) 227 Receptor binding
T263 A A T 266 Antigenic site E
325R¶ Absent Absent HA cleavage efficiency

*Amino acid residue in single-letter code and position in the mature H5 HA1.
†Equivalent residue number in the mature H3 HA1 aligned with H5 amino acid sequence; –, no change from HK97 clade HA consensus.
‡A156 or S156 were found in certain clade 3 HAs; A156 was present in some HAs from clade 2. HA genes from »50% of isolates collected in 2005 had these substitutions present in only one isolate: 1) to N or V; 2) to M or I; 3) to A, V, or I; or 4) to N.
§Change present exclusively in isolates from humans.
¶Arginine at the start of the polybasic cleavage site, position 325.

Because of the heightened alert due to H5N1 infections in Vietnam during the first months of 2005, we examined the HA sequences for evidence of shared amino acid changes. The HA of viruses isolated in the first 3 months of 2005 showed several amino acid changes relative to 2004 viruses (Table 1). None of the changes in the HA were common to all the 2005 viruses, which suggests that these variant viruses are cocirculating independently in poultry. The most commonly observed changes are located within short distances of the receptor-binding site. For example, positions D94, L175, and T188 may modulate the interaction of Y91, H179, and L190 with sialosides. One of the isolates from a fatal infection in 2005 showed a substitution of serine 223 to asparagine, which is predicted to facilitate binding of sialosides commonly found in mammalian species (Table 1).

The phylogenetic tree of the NA genes resembled that of the HA genes, which indicates coevolution of these 2 envelope genes (Figure 2). NA genes of isolates from Thailand seem to have diverged to form a group distinct from that of genes from Vietnam viruses. As reported previously, the NA of HK/213/03 did not co-evolve with the HA genes (28). NA genes from human and related avian H5N1 isolates from 2003–2005 as well as clade 3 isolates were characterized by deletions in the stalk region of the protein (positions 49–68 for clades 1–2 and 54–72 for clade 3) (29). Deletions in the stalk of the NA are thought to increase retention of virions at the plasma membrane (30) to balance weaker binding of sialic acid receptors by the HA with newly acquired N154 glycosylation.

Figure 2.

Figure 2

Phylogenetic relationships among N1 neuraminidase (NA) genes of H5N1 influenza viruses. The clade of the hemagglutinin of each of these viruses is indicated by font coloring as in Figure 1A. Brackets denote genes encoding NA protein with deletions in the stalk region; residues 49–68 for clades 1–2 and 57–75 in clade 3.

Neuraminidase inhibitors are effective antiviral drugs against human influenza viruses, and preclinical studies suggest a similar effectiveness against avian influenza in humans (5,31). The IC50 of oseltamivir for the clade 1 and 2 NA of 2004–2005 isolates was <10 nmol/L, as compared to IC50 values of 85 and 1,600 nmol/L for resistant H1N1 or H3N2 mutants used as controls (Table 3). Thus, NA of H5N1 isolates is sensitive to this class of antiviral agents.

Table 3. Sensitivity of H5N1 influenza isolates to oseltamivir.

Virus Oseltamivir IC50*
H1N1 (H274)† 0.69
H1N1 (Y274)† 85.92
H3N2 (R292)‡ 1.99
H3N2 (K292)‡ 1,600.00
Hong Kong/483/97 4.86
Hong Kong/213/03 5.07
Vietnam /1194/04 2.49
Vietnam/1203/04 7.68
Chicken/VN/NCVD1/04 5.87
Chicken/VN/NCVD8/03 9.90

*Median inhibitory concentration (IC50) of oseltamivir (nmol/L) for H5N1 influenza isolates and control H1N1 or H3N2 isolates (results for viruses shown are representatives of 31 isolates tested).
†Wildtype (H274) and resistant mutant (Y274) influenza virus A/Texas/36/91 (H1N1).
‡Wildtype (R292) and resistant mutant (K292) influenza virus A/Victoria/3/75 (H3N2).

The phylogenetic tree of the M genes resembled that of the HA genes, indicating coevolution of these genes (results not shown). The amino acid sequence of the M2 protein of clade 1 viruses as well as of HK/213/03 indicated a serine-to-asparagine substitution at residue 31 (S31N), known to confer resistance to adamantanes (including amantadine and rimantadine) (6). Clade 1 isolates from 2004 and 2005 cultured in the presence of 2 μg/mL rimantadine replicated as efficiently as in untreated cultures, whereas the replication of HK/483/97 was reduced to 1% of control values, indicating that all the currently circulating clade 1 isolates are resistant to adamantanes (data not shown).

Origin of Internal Genes of H5N1 Viruses from Asia

A complete genetic characterization of circulating H5N1 viruses is critical to identify the possible incorporation of human influenza virus genes by reassortment. To this end, we analyzed the phylogeny of the internal protein coding genes. The PB2, PB1, and PA polymerase genes from 2003–2005 H5N1 isolates from humans constitute a single clade (data not shown) and have coevolved with the respective HA genes (Figure 1). No evidence of reassortment with polymerase genes from circulating H1N1 or H3N2 human influenza virus was found. The phylogenies of the NP and NS genes also supported the avian origin of these genes, indicating that all the genes from the human H5N1 isolates analyzed are of avian origin, which confirms the absence of reassortment with human influenza genes. Taken together, the phylogenies of the 8 genomic segments show that the H5N1 viruses from human infections and the closely related avian viruses isolated in 2004 and 2005 belong to a single genotype, often referred to as genotype Z (1).

Antigenic Analysis of H5N1 Viruses from Asia

Influenza vaccines whose HA are antigenically similar to circulating strains provide the highest level of protection from infection (32). H5N1 isolates collected in 2004 and 2005 analyzed by the HI test showed reactivity patterns that correlated with the 3 main clades of recent isolates identified in the HA gene phylogeny (Table 3 and Figure 1). Viruses from humans and birds in clade 1, represented by VN/1203/04, were found to constitute a relatively homogeneous and distinct antigenic group characterized by poor inhibition by ferret antisera to isolates from other clades (Table 2), in particular by the ferret antiserum raised to HK/213/03 (64-fold reduction compared to the homologous titer). The latter isolate was previously used to develop a vaccine reference strain in response to 2 confirmed H5N1 human infections in February 2003 (15). These HI results provided the motivation for the development of an updated H5N1 vaccine that would be antigenically similar to 2004–2005 human isolates. The antigenic similarity of VN/1203/04 and the closely related VN/1194/04 to the contemporaneous H5N1 isolates from humans (data not shown) prompted their selection for vaccine reference stock development.

Table 2. Antigenic analysis of H5N1 isolates from Asia.

Virus antigen Clade Reference ferret antisera*
HK156 NCVD8 HK213 VN1203 VN04xPR8-rg VN78 VN4207 VN14 VN32321
A/Hong Kong/156/97 3 1,280 320 640 80 320 40 80 80 80
A/ck/Vietnam/NCVD8/03 2 640 160 80 80 160 20 <10 160 40
A/Hong Kong/213/03 1,280 1,280 2,560 80 640 160 160 640 640
A/Vietnam/1203/04 1 40 20 <10 640 320 40 160 80 40
A/Vietnam/1203/04xPR8-rg 1 80 <10 10 640 320 40 160 160 40
A/Vietnam/1194/04 1 40 20 10 640 320 40 160 160 40
A/Vietnam/JP178/04 1 80 10 <10 1,280 320 80 160 160 80
A/Vietnam/JP4207/05 1 160 40 40 1,280 640 80 320 160 80
A/Vietnam/JP14/05 1 20 <10 10 640 80 20 40 80 40
A/Vietnam/JP30321/05 1 40 40 10 <10 40 10 <10 40 160

*Homologous HI titers are in boldface.

Antigenic analysis of human isolates from 2005 provided evidence of antigenic drift among the most recently circulating H5N1 strains (Table 2). For example, VN/JPHN30321/05 showed a reduced HI titer against VN/1203/04 reference serum. This antigenic difference is correlated with 7 amino acid differences between the HA1 domain VN/1203/04 and VN/JPHN30321/05: R53K, N84D, D94N, K140R, L175M, K189R, and V219I (Table 1 and Table A1). Development of Candidate H5N1 Vaccine Reference Stocks Mass vaccination is the most effective approach to reduce illness and death from pandemic influenza. Inactivated influenza vaccines are manufactured from reassortant viruses obtained by transferring the HA and NA genes with the desired antigenic properties into a high-growth strain such as PR8 (33). However, reassortants with H5-derived HA with a polybasic cleavage site are potentially hazardous for animal health. Because the high pathogenicity of the H5N1 viruses in poultry, mice, and ferrets depends primarily on the polybasic cleavage site in the HA molecule, a derivative with a deletion of this motif was engineered in cloned HA cDNAs. Three high-growth reassortant influenza viruses were developed: NIBRG-14 (NIBSC), VN/04xPR8-rg (SJCRH), and VNH5N1-PR8/CDC-rg (CDC). These candidate vaccine strains, bearing mutant H5 HA, intact NA, and the internal genes from PR8, were generated by a reverse genetics approach (12,13,20,34) using Vero cells and laboratory protocols compatible with eventual use of the vaccine in human subjects (15,18). These 3 vaccine candidates were characterized genetically (nucleotide sequencing of HA and NA) and antigenically in HI assays to confirm that their antigenicity remained unchanged relative to the wildtype virus (Table 2). The candidate reference stocks had molecular and antigenic properties equivalent to parental H5N1 donor strains and lacked virulence in chicken, mouse, and ferret models.

Discussion

The growing H5N1 epizootic in eastern Asia could expand the environmental load of virus and cause more infections in mammals (35), which would increase the probability that a highly transmissible virus will emerge in mammals. We therefore analyzed the medically relevant genes from viruses isolated from the beginning of the outbreak until March 2005 to evaluate parameters relevant to public health.

The origin of the HA genes of the 2004–2005 outbreak as well as an earlier isolate from a fatal human infection in Hong Kong in 2003 (clade 1´) can be traced back to viruses isolated in 1997 in Hong Kong (clade 3) and from geese in China (goose/Guangdong/96) (Figure 1A). The phylogeny also shows that viruses with HK/97-like HA may have circulated in avian hosts continuously after 1997, without causing any reported human infections until the 2 confirmed cases in Hong Kong in February 2003 (28).

The 2004–2005 H5N1 isolates are sensitive to 2 neuraminidase inhibitors that are recommended for prophylactic or therapeutic intervention against human infections with recent H5N1 strains. Rapidly testing potentially pandemic influenza viruses for their susceptibility to licensed drugs is essential to establish appropriate control measures.

An effective H5N1 vaccine is a public health priority and the cornerstone for pandemic prevention and control. Reverse genetics approaches allow the rapid production of high-growth PR8 reassortant viruses by engineering a virus with a homologous HA gene lacking the polybasic amino acids associated with high virulence. These candidate H5N1 pandemic vaccine viruses have been made available to vaccine manufacturers to produce pilot lots for clinical trials and are available for possible large-scale manufacturing should the need arise.

Genetic and antigenic analyses have shown that, compared to previous H5N1 isolates, 2004–2005 isolates share several amino acid changes that modulate antigenicity and perhaps other biological functions. Furthermore, our molecular analysis of the HA from isolates collected in 2005 suggests that several amino acids located near the receptor-binding site are undergoing change, some of which may affect antigenicity or transmissibility. For example, an isolate (VN/JP12-2/05) showed a change from serine to asparagine at position 223 of the HA1 (S223N) that may affect receptor-binding specificity (36). The VN/30321/05 isolate demonstrated considerable antigenic drift from VN/04-like isolates, which have been selected as the candidate vaccine antigens. Further surveillance to determine the prevalence of such variants in poultry will be critical to determine if these variants compromise the efficacy of the candidate vaccine or increase the efficiency of transmission.

The phylogenies of the 8 genomic segments from the clade 1 and 2 isolates from 2004–2005 showed that all genes are of avian origin. All H5N1 isolates from both clades belong to 1 of the genotypes recently circulating in Eastern and Southern Asia, e.g., genotypes V and Z (1,37). The influenza virus genome has remarkable plasticity because of a high mutation rate and its segmentation into 8 separate RNA molecules. This segmentation allows frequent genetic exchange by segment reassortment in hosts co-infected with 2 different influenza viruses. No evidence has been seen that the 2004–2005 H5N1 isolates have acquired nonavian influenza genes by reassortment. However, continued surveillance is important because genetic reassortment may facilitate the evolution of viruses with increased virulence or expanded host range.

The currently circulating H5N1 viruses were reported to infect domestic or wild captive felids, such as tigers, feeding on infected bird carcasses, and the infected cats can transmit H5N1 to pen mates (38). Furthermore, circumstantial evidence indicates that tiger-to-tiger transmission of H5N1 has occurred at a zoo in Thailand (39). Recent evidence of person-to-person transmission and the clustering of H5N1 cases raise the level of concern for a pandemic of H5N1 influenza (3). Therefore, sustained and aggressive efforts to control H5N1 circulation in poultry are mandatory to avoid possible catastrophic public health consequences.

Acknowledgments

We thank Ruben O. Donis for drafting the manuscript on behalf of the WHO team, Michael Shaw for phylogenetic analyses, WHO Geneva for coordinating access to specimens, and Catherine Macken for providing access to the Influenza Sequence Database. The WHO Global Influenza Surveillance Network would like to thank WHO regional offices for Southeast Asia and the Western Pacific and WHO country offices for their generous and valuable support in sharing viruses and specimens between affected countries and WHO.

Research at St. Jude Hospital was supported in part by grant AI95357 from the National Institutes of Health.

Table A1. Influenza Sequence Database accession numbers of influenza virus genes analyzed*.

Influenza strain Clade Hemagglutinin Neuraminidase M
A/Vietnam/HN30408/05 1 ISDN119678 ISDN119679 NA†
A/Vietnam/JP14/05 1 ISDN117778 ISDN117783 NA
A/Vietnam/JPHN30321/05 1 ISDN118371 NA NA
A/Vietnam/JP4207/05 1 ISDN117777 ISDN117782 NA
A/Cambodia/JP52a/2005 1 ISDN121986 ISDN122818 NA
A/Chicken/Cambodia/013LC1b/2005 1 ISDN122143 ISDN122148 NA
A/Chicken/Cambodia/013LC2b/2005 1 NA ISDN122151 NA
A/Chicken/Cambodia/022LC3b/2005 1 ISDN122146 ISDN122152 NA
A/Goose/Cambodia/022b/2005 1 ISDN122147 ISDN122153 NA
A/Vietnam/JP178/04 1 ISDN69608 ISDN69610 AF255363
A/Vietnam/1194/2004 1 ISDN38686 ISDN38703 ISDN39957
A/Vietnam/1203/2004 1 ISDN38687 ISDN38704 ISDN39958
A/Thailand/16/2004 1 ISDN40341 ISDN48790 ISDN45755
A/Vietnam/3062/2004 1 AY651336 AY651448 NA
A/Vietnam/3212/2004 1 ISDN40278 NA NA
A/Thailand/Suphanburi/83/2004 1 ISDN40917 ISDN48792 ISDN111182
A/Thailand/Kan353/2004 1 ISDN40918 ISDN48791 1SDN111183
A/Thailand/Chaiyaphum/622/2004 1 ISDN49460 ISDN48793 ISDN111184
A/Chicken/Thailand/2/2004 1 ISDN49021 ISDN49267 ISDN49264
A/Prachinburi/6231/2004 1 ISDN110940 ISDN110939 ISDN111185
A/Chicken/Malaysia/5854/2004 1 ISDN80767 ISDN80771 ISDN80770
A/Chicken/Vietnam/1/2004 1 ISDN40909 ISDN48796 ISDN111226
A/Duck/Vietnam/NCVD1/2002 ISDN38689 ISDN38697 ISDN39960
A/Chicken/Vietnam/NCVD8/2003 ISDN40326 ISDN38706 ISDN39967
A/Chicken/Laos/7191/2004 1 ISDN40922 ISDN48817 ISDN111227
A/Chicken/Laos/7192/2004 1 ISDN40923 NA NA
A/Goose/Cambodia/28/2004 1 ISDN49121 ISDN49130 ISDN49144
A/Chicken/ Cambodia/7/2004 1 ISDN49117 NA NA
A/Duck/Hong Kong/821/2002 AY575874 ISDN38794 AY575898
A/Hong Kong/213/2003 ISDN38262 ISDN48789 AY575894
A/Chicken/Guangxi/12/2004 2 ISDN48980 ISDN48982 ISDN48983
A/Duck/Guangxi/13/2004 2 ISDN48989 ISDN48987 ISDN48986
A/Duck/Hunan/15/2004 2 ISDN48957 ISDN48958 ISDN48968
A/Chicken/Indonesia/7/2003 2 ISDN111351 ISDN111353 ISDN111355
A/Chicken/Indonesia/11/2003 2 ISDN111352 ISDN111354 ISDN111356
A/Chicken/Yamaguchi/7/2004 2 ISDN49016 ISDN49017 ISDN49085
A/Chicken/Korea/ES/2003 2 ISDN40921 ISDN38694 ISDN45748
A/Chicken/Hong Kong/YU324/03 2 AY651358 NA NA
A/Chicken/Hong Kong/YU35703 2 NA ISDN38805 ISDN38768
A/Duck/China/E319-2/2003 2 AY518362 AY518363 AY518361
A/Chicken/Hubei/14/2004 ISDN48972 ISDN48973 ISDN48975
A/ Teal/Hong Kong/2978/2002 AY651352 ISDN38789 AY651417
A/Goose/Vietnam/113/2001 ISDN38260 ISDN48794 ISDN117743
A/Duck/Hong Kong/380.5/2001 AY075033 AY075034 AY075035
A/Duck meat/Anyang/AVL-1/2001 AF468837 AF468838 AF468843
A/Quail/Hong Kong/SF550/2000 3 NA AJ410561 AJ410571
A/Hong Kong/156/97 3 AF460880 AF036357 AF036358
A/Hong Kong/483/97 3 AF460970 AF102668 AF255367
A/Hong Kong/97/98 3 AF102676 AF102661 AF255374
A/Aquatic bird/Hong Kong/M603/98 NA NA AF098551 AF250486
A/Chicken/Hong Kong/728/97 3 AF046099 NA NA
A/Chicken/220/97 3 AF046080 NA NA
A/Goose/Guangdong/1/96 3 AF144305 AF144304 AF144306
A/Hong Kong/1073/99 NA NA NA Submit

*Virus names shown in boldface were used to prepare antiserum for use in antigenic characterization (Table 3). NA, not applicable.
†ISDN numbers are found in the Los Alamos National Laboratory Influenza Sequence Database (available at http://apollo.lanl.gov); others are in Genbank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide).

Suggested citation for this article: The World Health Organization Global Influenza Program Surveillance Network. Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis [serial on the Internet]. 2005 Oct [date cited]. http://dx.doi.org/10.3201/eid1110.050644

1

Members of the World Health Organization Global Influenza Program and collaborating laboratories: Jean-Thierry Aubin, Saliha Azebi, Amanda Balish, Jill Banks, Niranjan Bhat, Rick A. Bright, Ian Brown, Philippe Buchy, Ana-Maria Burguiere, Hua-lan Chen, Peter Cheng, Nancy J. Cox, Alice Crosier, Aaron Curns, Frédérique Cuvelier, Guohua Deng, Julia Desheva, Stéphanie Desvaux, Nguyen Hong Diep, Ruben O. Donis, Alan Douglas, Scott F. Dowell, Nguyen Tien Dung, Lindsay Edwards, Keiji Fukuda, Rebecca Garten, Elena Govorkova, Victoria Gregory, Alan Hampson, Nguyen Thi Hong Hanh, Scott Harper, Alan Hay, Erich Hoffmann, Diane Hulse, Masaki Imai, Shigeyuki Itamura, Samadhan Jadhao, Patricia Jeannin, Chun Kang, Jackie Katz, Jae-Hong Kim, Alexander Klimov, Yong-kuk Kwon, Chang-Won Lee, Phuong Song Lien, Yanbing Li, Wilina Lim, Yi Pu Lin, Stephen Lindstom, LaMorris Loftin, Jan Mabry, Le Quynh Mai, Taronna Maines, Jean-Claude Manuguerra, Masaji Mase, Yumi Matsuoka, Margaret McCarron, Marie-Jo Medina, Doan Nguyen, Ai Ninomiya, Masatsugu Obuchi, Takato Odagiri, Malik Peiris, Michael L. Perdue, Jean-Marc Reynes, James Robertson, Claudine Rousseaux, Takehiko Saito, Somchai Sangkitporn, Michael Shaw, James M. Simmerman, M. Slomka, Catherine Smith, San Sorn, Erica Spackman, Klaus Stöhr, David L. Suarez, Haan Woo Sung, David E Swayne, Maryse Tardy-Panit, Masato Tashiro, Pranee Thawatsupha, Terrence Tumpey, Timothy Uyeki, Phan Van Tu, Sylvie van der Werf, Sirenda Vong, Richard Webby, Robert Webster, John Wood, Xiyan Xu, Guan Yi, and Wenqing Zhang. For author affiliations, please Download PDF (37 KB, 2 pages).

References

  • 1.Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature. 2004;430:209–13. 10.1038/nature02746 [DOI] [PubMed] [Google Scholar]
  • 2.World Health Organization. Confirmed human cases of avian influenza A(H5N1) since 28 January 2004. [on the Internet]. 2005 Jan 26 [cited 2005 Aug 1]. Available from http://www.who.int/csr/disease/avian_influenza/country/cases_table_2005_01_26/en/
  • 3.Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W, Puthavathana P, et al. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med. 2005;352:333–40. 10.1056/NEJMoa044021 [DOI] [PubMed] [Google Scholar]
  • 4.Wilson IA, Cox NJ. Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol. 1990;8:737–71. 10.1146/annurev.iy.08.040190.003513 [DOI] [PubMed] [Google Scholar]
  • 5.Welliver R, Monto AS, Carewicz O, Schatteman E, Hassman M, Hedrick J, et al. Effectiveness of oseltamivir in preventing influenza in household contacts: a randomized controlled trial. JAMA. 2001;285:748–54. 10.1001/jama.285.6.748 [DOI] [PubMed] [Google Scholar]
  • 6.Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 1985;4:3021–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Devereux J. Comprehensive set of sequence analysis programs for the VAX NAR. Nucleic Acids Res. 1986;12:387–95. 10.1093/nar/12.1Part1.387 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Felsenstein J. PHYLIP Phylogeny Inference Package Version 3.2. Cladistics. 1989;5:164–6. [Google Scholar]
  • 9.Kendal AP, Pereira MS, Skehel JJ. Hemagglutination inhibition. In: Kendal AP, Pereira MS, Skehel JJ, editors. Concepts and procedures for laboratory-based influenza surveillance. Atlanta: Centers for Disease Control and Prevention and Pan-American Health Organization; 1982. p. B17–35. [Google Scholar]
  • 10.Stephenson I, Wood JM, Nicholson KG, Zambon MC. Sialic acid receptor specificity on erythrocytes affects detection of antibody to avian influenza haemagglutinin. J Med Virol. 2003;70:391–8. 10.1002/jmv.10408 [DOI] [PubMed] [Google Scholar]
  • 11.Mungall BA, Xu X, Klimov A. Surveillance of influenza isolates for susceptibility to neuraminidase inhibitors during the 2000–2002 influenza seasons. Virus Res. 2004;103:195–7. 10.1016/j.virusres.2004.02.033 [DOI] [PubMed] [Google Scholar]
  • 12.Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A. Rescue of influenza A virus from recombinant DNA. J Virol. 1999;73:9679–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A. 1999;96:9345–50. 10.1073/pnas.96.16.9345 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hoffmann E, Webster RG. Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. J Gen Virol. 2000;81:2843–7. [DOI] [PubMed] [Google Scholar]
  • 15.Webby RJ, Perez DR, Coleman JS, Guan Y, Knight JH, Govorkova EA, et al. Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet. 2004;363:1099–103. 10.1016/S0140-6736(04)15892-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Schickli JH, Flandorfer A, Nakaya T, Martinez-Sobrido L, Garcia-Sastre A, Palese P. Plasmid-only rescue of influenza A virus vaccine candidates. Philos Trans R Soc Lond B Biol Sci. 2001;356:1965–73. 10.1098/rstb.2001.0979 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A. 2000;97:6108–13. 10.1073/pnas.100133697 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Nicolson C, Major D, Wood JM, Robertson JS. Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine. 2005;23:2943–52. 10.1016/j.vaccine.2004.08.054 [DOI] [PubMed] [Google Scholar]
  • 19.World Health Organization. Production of pilot lots of inactivated influenza vaccine in response to a pandemic threat: an interim biosafety risk assessment. Wkly Epidemiol Rec. 2003;78:405–8. [PubMed] [Google Scholar]
  • 20.Subbarao K, Chen H, Swayne D, Mingay L, Fodor E, Brownlee G, et al. Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology. 2003;305:192–200. 10.1006/viro.2002.1742 [DOI] [PubMed] [Google Scholar]
  • 21.Centers for Disease Control and Prevention. Outbreaks of avian influenza A (H5N1) in Asia and interim recommendations for evaluation and reporting of suspected cases—United States, 2004. MMWR Morb Mortal Wkly Rep. 2004;53:97–100. [PubMed] [Google Scholar]
  • 22.Sturm-Ramirez KM, Ellis T, Bousfield B, Bissett L, Dyrting K, Rehg JE, et al. Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J Virol. 2004;78:4892–901. 10.1128/JVI.78.9.4892-4901.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Tumpey TM, Suarez DL, Perkins LE, Senne DA, Lee J, Lee YJ, et al. Evaluation of a high-pathogenicity H5N1 avian influenza A virus isolated from duck meat. Avian Dis. 2003;47(Suppl):951–5. 10.1637/0005-2086-47.s3.951 [DOI] [PubMed] [Google Scholar]
  • 24.Ha Y, Stevens DJ, Skehel JJ, Wiley DC. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A. 2001;98:11181–6. 10.1073/pnas.201401198 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Baigent SJ, McCauley JW. Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res. 2001;79:177–85. 10.1016/S0168-1702(01)00272-6 [DOI] [PubMed] [Google Scholar]
  • 26.Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, et al. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol. 2000;74:6015–20. 10.1128/JVI.74.13.6015-6020.2000 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Perdue ML, Suarez DL. Structural features of the avian influenza virus hemagglutinin that influence virulence. Vet Microbiol. 2000;74:77–86. 10.1016/S0378-1135(00)00168-1 [DOI] [PubMed] [Google Scholar]
  • 28.Guan Y, Poon LL, Cheung CY, Ellis TM, Lim W, Lipatov AS, et al. H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A. 2004;101:8156–61. 10.1073/pnas.0402443101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Bender C, Hall H, Huang J, Klimov A, Cox N, Hay A, et al. Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997–1998. Virology. 1999;254:115–23. 10.1006/viro.1998.9529 [DOI] [PubMed] [Google Scholar]
  • 30.Matrosovich M, Zhou N, Kawaoka Y, Webster R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol. 1999;73:1146–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Leneva IA, Roberts N, Govorkova EA, Goloubeva OG, Webster RG. The neuraminidase inhibitor GS4104 (oseltamivir phosphate) is efficacious against A/Hong Kong/156/97 (H5N1) and A/Hong Kong/1074/99 (H9N2) influenza viruses. Antiviral Res. 2000;48:101–15. 10.1016/S0166-3542(00)00123-6 [DOI] [PubMed] [Google Scholar]
  • 32.Subbarao K. Influenza vaccines: present and future. Adv Virus Res. 1999;54:349–73. 10.1016/S0065-3527(08)60371-1 [DOI] [PubMed] [Google Scholar]
  • 33.Kilbourne ED. Future influenza vaccines and the use of genetic recombinants. Bull World Health Organ. 1969;41:643–5. [PMC free article] [PubMed] [Google Scholar]
  • 34.Hoffmann E, Krauss S, Perez D, Webby R, Webster RG. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine. 2002;20:3165–70. 10.1016/S0264-410X(02)00268-2 [DOI] [PubMed] [Google Scholar]
  • 35.Keawcharoen J, Oraveerakul K, Kuiken T, Fouchier R, Amonsin A, Payungporn S, et al. Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis. 2004;10:2189–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Harvey R, Martin AC, Zambon M, Barclay WS. Restrictions to the adaptation of influenza a virus h5 hemagglutinin to the human host. J Virol. 2004;78:502–7. 10.1128/JVI.78.1.502-507.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Mase M, Tsukamoto K, Imada T, Imai K, Tanimura N, Nakamura K, et al. Characterization of H5N1 influenza A viruses isolated during the 2003–2004 influenza outbreaks in Japan. Virology. 2005;332:167–76. 10.1016/j.virol.2004.11.016 [DOI] [PubMed] [Google Scholar]
  • 38.Kuiken T, Rimmelzwaan G, van Riel D, van Amerongen G, Baars M, Fouchier RA, et al. Avian H5N1 influenza in cats. Science. 2004;306:241. 10.1126/science.1102287 [DOI] [PubMed] [Google Scholar]
  • 39.Thanawongnuwech R, Amonsin A, Tantilertcharoen R, Damrongwatanapokin S, Theamboonlers A, Payungporn S, et al. Probable tiger-to-tiger transmission of avian influenza H5N1. Emerg Infect Dis. 2005;11:699–701. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES