Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1988 Jun 10;16(11):5123–5136. doi: 10.1093/nar/16.11.5123

Synthesis of a trans-syn thymine dimer building block. Solid phase synthesis of CGTAT[t,s]TATGC.

J S Taylor 1, I R Brockie 1
PMCID: PMC336722  PMID: 3387219

Abstract

The synthesis of a building block for the sequence specific introduction of the trans-syn thymine dimer into oligonucleotides via solid phase DNA synthesis technology is described. CGTAT[t,s]TATGC was synthesized in 48% overall yield by a partially automated procedure. The stepwise coupling yield for addition of the trans-syn thymine dimer building block was 58%. The dimer containing oligonucleotide was characterized by 500 MHz 1H COSY and NOESY spectroscopy and 202.5 MHz 31P NMR. The 1H chemical shifts for the trans-syn thymine dimer unit of the decamer were found to be quite similar to those found for the trans-syn thymine dimer of TpT. Upon photolysis at 254 nm, CGTAT[t,s]TATGC was converted to a major product which coeluted with authentic CGTATTATGC and a minor product which coeluted with authentic CGTAT[c,s]TATGC, further supporting the presence of an intact trans-syn thymine dimer unit.

Full text

PDF
5123

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Hur E., Ben-Ishai R. Trans-syn thymine dimers in ultraviolet-irradiated denatured DNA: identification and photoreactivability. Biochim Biophys Acta. 1968 Aug 23;166(1):9–15. doi: 10.1016/0005-2787(68)90485-1. [DOI] [PubMed] [Google Scholar]
  2. Dörper T., Winnacker E. L. Improvements in the phosphoramidite procedure for the synthesis of oligodeoxyribonucleotides. Nucleic Acids Res. 1983 May 11;11(9):2575–2584. doi: 10.1093/nar/11.9.2575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Husain I., Sancar A. Binding of E. coli DNA photolyase to a defined substrate containing a single T mean value of T dimer. Nucleic Acids Res. 1987 Feb 11;15(3):1109–1120. doi: 10.1093/nar/15.3.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. JOHNS H. E., PEARSON M. L., LEBLANC J. C., HELLEINER C. W. THE ULTRAVIOLET PHOTOCHEMISTRY OF THYMIDYLYL-(3'-5')-THYMIDINE. J Mol Biol. 1964 Aug;9:503–524. doi: 10.1016/s0022-2836(64)80223-0. [DOI] [PubMed] [Google Scholar]
  5. Kemmink J., Boelens R., Kaptein R. Two-dimensional 1H NMR study of two cyclobutane type photodimers of thymidylyl-(3'----5')-thymidine. Eur Biophys J. 1987;14(5):293–299. doi: 10.1007/BF00254894. [DOI] [PubMed] [Google Scholar]
  6. Kemmink J., Boelens R., Koning T. M., Kaptein R., van der Marel G. A., van Boom J. H. Conformational changes in the oligonucleotide duplex d(GCGTTGCG) x d(CGCAACGC) induced by formation of a cis-syn thymine dimer. A two-dimensional NMR study. Eur J Biochem. 1987 Jan 2;162(1):37–43. doi: 10.1111/j.1432-1033.1987.tb10538.x. [DOI] [PubMed] [Google Scholar]
  7. Liu F. T., Yang N. C. Photochemistry of cytosine derivatives. 1. Photochemistry of thymidylyl-(3' leads to 5')-deoxycytidine. Biochemistry. 1978 Nov 14;17(23):4865–4876. doi: 10.1021/bi00616a003. [DOI] [PubMed] [Google Scholar]
  8. Rycyna R. E., Alderfer J. L. UV irradiation of nucleic acids: formation, purification and solution conformational analysis of the '6-4 lesion' of dTpdT. Nucleic Acids Res. 1985 Aug 26;13(16):5949–5963. doi: 10.1093/nar/13.16.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Setlow R. B. Repair deficient human disorders and cancer. Nature. 1978 Feb 23;271(5647):713–717. doi: 10.1038/271713a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES