Abstract
The alkylation of phosphates in DNA by therapeutically active haloethylnitrosoureas was studied by reacting N-chloroethyl-N-nitrosourea (CNU) with dTpdT, separating the products by HPLC, and identifying them by co-chromatography with authentic markers. Both hydroxyethyl and chloroethyl phosphotriesters of dTpdT were identified; a similar reaction between CNU and dTR yielded 3-hydroxyethyl and 3-chloroethyl dTR as the major products of ring alkylation. A DNA-like substrate for repair studies was synthesized by reacting 14C-labelled N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea (14C-CCNU) with poly dT and annealing the product to poly dA. An extract of E. coli strain BS21 selectively transferred a chloroethyl group from one of the chloroethyl phosphotriester isomers in this substrate to the bacterial protein; chemical instability of the hydroxyethyl phosphotriesters precluded definite conclusions about the repair of this product.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chattopadhyaya J. B., Reese C. B. Chemical synthesis of tridecanucleoside dodecaphosphate sequence of SV40 DNA. Nucleic Acids Res. 1980 May 10;8(9):2039–2053. doi: 10.1093/nar/8.9.2039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conrad J., Müller N., Eisenbrand G. Studies on the stability of trialkyl phosphates and di-(2'deoxythymidine) phosphotriesters in alkaline and neutral solution. A model study for hydrolysis of phosphotriesters in DNA and on the influence of a beta hydroxyethyl ester group. Chem Biol Interact. 1986 Oct 15;60(1):57–65. doi: 10.1016/0009-2797(86)90017-7. [DOI] [PubMed] [Google Scholar]
- Erickson L. C., Laurent G., Sharkey N. A., Kohn K. W. DNA cross-linking and monoadduct repair in nitrosourea-treated human tumour cells. Nature. 1980 Dec 25;288(5792):727–729. doi: 10.1038/288727a0. [DOI] [PubMed] [Google Scholar]
- Kacinski B. M., Rupp W. D., Ludlum D. B. Repair of haloethylnitrosourea-induced DNA damage in mutant and adapted bacteria. Cancer Res. 1985 Dec;45(12 Pt 1):6471–6474. [PubMed] [Google Scholar]
- Lown J. W., McLaughlin L. W. Nitrosourea-induced DNA single-strand breaks. Biochem Pharmacol. 1979 May 15;28(10):1631–1638. doi: 10.1016/0006-2952(79)90176-x. [DOI] [PubMed] [Google Scholar]
- Ludlum D. B. High performance liquid chromatographic separation of DNA adducts induced by cancer chemotherapeutic agents. Pharmacol Ther. 1987;34(2):145–153. doi: 10.1016/0163-7258(87)90008-8. [DOI] [PubMed] [Google Scholar]
- Margison G. P., Cooper D. P., Brennand J. Cloning of the E. coli O6-methylguanine and methylphosphotriester methyltransferase gene using a functional DNA repair assay. Nucleic Acids Res. 1985 Mar 25;13(6):1939–1952. doi: 10.1093/nar/13.6.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarthy J. G., Edington B. V., Schendel P. F. Inducible repair of phosphotriesters in Escherichia coli. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7380–7384. doi: 10.1073/pnas.80.24.7380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E., Perry W., Bennett R. A. Effect of partial hepatectomy on removal of O6-methylguanine from alkylated DNA by rat liver extracts. Biochem J. 1981 Jul 1;197(1):195–201. doi: 10.1042/bj1970195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer B. N-nitroso alkylating agents: formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis. J Natl Cancer Inst. 1979 Jun;62(6):1329–1339. [PubMed] [Google Scholar]
- Teo I., Sedgwick B., Kilpatrick M. W., McCarthy T. V., Lindahl T. The intracellular signal for induction of resistance to alkylating agents in E. coli. Cell. 1986 Apr 25;45(2):315–324. doi: 10.1016/0092-8674(86)90396-x. [DOI] [PubMed] [Google Scholar]
- Tong W. P., Kirk M. C., Ludlum D. B. Formation of the cross-link 1-[N3-deoxycytidyl),2-[N1-deoxyguanosinyl]ethane in DNA treated with N,N'-bis(2-chloroethyl)-N-nitrosourea. Cancer Res. 1982 Aug;42(8):3102–3105. [PubMed] [Google Scholar]
- Tong W. P., Kirk M. C., Ludlum D. B. Mechanism of action of the nitrosoureas--V. Formation of O6-(2-fluoroethyl)guanine and its probable role in the crosslinking of deoxyribonucleic acid. Biochem Pharmacol. 1983 Jul 1;32(13):2011–2015. doi: 10.1016/0006-2952(83)90420-3. [DOI] [PubMed] [Google Scholar]
- Weinfeld M., Drake A. F., Saunders J. K., Paterson M. C. Stereospecific removal of methyl phosphotriesters from DNA by an Escherichia coli ada+ extract. Nucleic Acids Res. 1985 Oct 11;13(19):7067–7077. doi: 10.1093/nar/13.19.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamauchi K., Hayashi M., Kinoshita M. N-alkylation of purines with alkyl esters of phosphorus oxy acids. J Org Chem. 1975 Feb 7;40(3):385–386. doi: 10.1021/jo00891a030. [DOI] [PubMed] [Google Scholar]