Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Jun 11;20(11):2693–2698. doi: 10.1093/nar/20.11.2693

Targeted alterations in yeast artificial chromosomes for inter-species gene transfer.

N P Davies 1, I R Rosewell 1, M Brüggemann 1
PMCID: PMC336909  PMID: 1614855

Abstract

In order to facilitate alterations of large DNA molecules for their introduction into mammalian cells we have characterised the mechanism of site-specific modifications in yeast artificial chromosomes (YACs). Newly developed yeast integration vectors with dominant selectable marker genes allow targeted integration into left (centromeric) and right (non-centromeric) YAC arms as well as alterations to the human derived insert DNA. In transformation experiments, integration proceeds exclusively by homologous recombination although yeast prefers linear ends of homology for predefined insertions. Targeted regions can be rescued which expedite the cloning of internal human sequences and the identification of 5' and 3' YAC/insert borders. Integration of the neomycin resistance gene into various parts of the YAC allowed the transfer and stable integration of large DNA molecules into a variety of mammalian cells including embryonic stem cells.

Full text

PDF
2693

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botstein D., Fink G. R. Yeast: an experimental organism for modern biology. Science. 1988 Jun 10;240(4858):1439–1443. doi: 10.1126/science.3287619. [DOI] [PubMed] [Google Scholar]
  2. Brownstein B. H., Silverman G. A., Little R. D., Burke D. T., Korsmeyer S. J., Schlessinger D., Olson M. V. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science. 1989 Jun 16;244(4910):1348–1351. doi: 10.1126/science.2544027. [DOI] [PubMed] [Google Scholar]
  3. Burgers P. M., Percival K. J. Transformation of yeast spheroplasts without cell fusion. Anal Biochem. 1987 Jun;163(2):391–397. doi: 10.1016/0003-2697(87)90240-5. [DOI] [PubMed] [Google Scholar]
  4. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  5. Campbell C., Gulati R., Nandi A. K., Floy K., Hieter P., Kucherlapati R. S. Generation of a nested series of interstitial deletions in yeast artificial chromosomes carrying human DNA. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5744–5748. doi: 10.1073/pnas.88.13.5744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deininger P. L., Jolly D. J., Rubin C. M., Friedmann T., Schmid C. W. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol. 1981 Sep 5;151(1):17–33. doi: 10.1016/0022-2836(81)90219-9. [DOI] [PubMed] [Google Scholar]
  8. Doggett N. A., Smith C. L., Cantor C. R. The effect of DNA concentration on mobility in pulsed field gel electrophoresis. Nucleic Acids Res. 1992 Feb 25;20(4):859–864. doi: 10.1093/nar/20.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eliceiri B., Labella T., Hagino Y., Srivastava A., Schlessinger D., Pilia G., Palmieri G., D'Urso M. Stable integration and expression in mouse cells of yeast artificial chromosomes harboring human genes. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2179–2183. doi: 10.1073/pnas.88.6.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  11. Fernandez-Luna J. L., Matthews R. J., Brownstein B. H., Schreiber R. D., Thomas M. L. Characterization and expression of the human leukocyte-common antigen (CD45) gene contained in yeast artificial chromosomes. Genomics. 1991 Jul;10(3):756–764. doi: 10.1016/0888-7543(91)90460-v. [DOI] [PubMed] [Google Scholar]
  12. Fleig U. N., Pridmore R. D., Philippsen P. Construction of LYS2 cartridges for use in genetic manipulations of Saccharomyces cerevisiae. Gene. 1986;46(2-3):237–245. doi: 10.1016/0378-1119(86)90408-7. [DOI] [PubMed] [Google Scholar]
  13. Gnirke A., Barnes T. S., Patterson D., Schild D., Featherstone T., Olson M. V. Cloning and in vivo expression of the human GART gene using yeast artificial chromosomes. EMBO J. 1991 Jul;10(7):1629–1634. doi: 10.1002/j.1460-2075.1991.tb07685.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Green E. D., Olson M. V. Chromosomal region of the cystic fibrosis gene in yeast artificial chromosomes: a model for human genome mapping. Science. 1990 Oct 5;250(4977):94–98. doi: 10.1126/science.2218515. [DOI] [PubMed] [Google Scholar]
  15. Hermanson G. G., Hoekstra M. F., McElligott D. L., Evans G. A. Rescue of end fragments of yeast artificial chromosomes by homologous recombination in yeast. Nucleic Acids Res. 1991 Sep 25;19(18):4943–4948. doi: 10.1093/nar/19.18.4943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hieter P. A., Max E. E., Seidman J. G., Maizel J. V., Jr, Leder P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell. 1980 Nov;22(1 Pt 1):197–207. doi: 10.1016/0092-8674(80)90168-3. [DOI] [PubMed] [Google Scholar]
  17. Huxley C., Gnirke A. Transfer of yeast artificial chromosomes from yeast to mammalian cells. Bioessays. 1991 Oct;13(10):545–550. doi: 10.1002/bies.950131009. [DOI] [PubMed] [Google Scholar]
  18. Jenuwein T., Grosschedl R. Complex pattern of immunoglobulin mu gene expression in normal and transgenic mice: nonoverlapping regulatory sequences govern distinct tissue specificities. Genes Dev. 1991 Jun;5(6):932–943. doi: 10.1101/gad.5.6.932. [DOI] [PubMed] [Google Scholar]
  19. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  20. Müllenbach R., Lagoda P. J., Welter C. An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 1989 Dec;5(12):391–391. [PubMed] [Google Scholar]
  21. Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. doi: 10.1073/pnas.78.10.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pachnis V., Pevny L., Rothstein R., Costantini F. Transfer of a yeast artificial chromosome carrying human DNA from Saccharomyces cerevisiae into mammalian cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5109–5113. doi: 10.1073/pnas.87.13.5109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pavan W. J., Hieter P., Reeves R. H. Generation of deletion derivatives by targeted transformation of human-derived yeast artificial chromosomes. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1300–1304. doi: 10.1073/pnas.87.4.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pavan W. J., Hieter P., Reeves R. H. Modification and transfer into an embryonal carcinoma cell line of a 360-kilobase human-derived yeast artificial chromosome. Mol Cell Biol. 1990 Aug;10(8):4163–4169. doi: 10.1128/mcb.10.8.4163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pavan W. J., Reeves R. H. Integrative selection of human chromosome-specific yeast artificial chromosomes. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7788–7791. doi: 10.1073/pnas.88.17.7788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rose M., Grisafi P., Botstein D. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene. 1984 Jul-Aug;29(1-2):113–124. doi: 10.1016/0378-1119(84)90172-0. [DOI] [PubMed] [Google Scholar]
  27. Scherer S., Davis R. W. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4951–4955. doi: 10.1073/pnas.76.10.4951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schlessinger D. Yeast artificial chromosomes: tools for mapping and analysis of complex genomes. Trends Genet. 1990 Aug;6(8):248, 255-8. doi: 10.1016/0168-9525(90)90207-m. [DOI] [PubMed] [Google Scholar]
  29. Schwartzberg P. L., Goff S. P., Robertson E. J. Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science. 1989 Nov 10;246(4931):799–803. doi: 10.1126/science.2554496. [DOI] [PubMed] [Google Scholar]
  30. Sharpe M. J., Milstein C., Jarvis J. M., Neuberger M. S. Somatic hypermutation of immunoglobulin kappa may depend on sequences 3' of C kappa and occurs on passenger transgenes. EMBO J. 1991 Aug;10(8):2139–2145. doi: 10.1002/j.1460-2075.1991.tb07748.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Srivastava A. K., Schlessinger D. Vectors for inserting selectable markers in vector arms and human DNA inserts of yeast artificial chromosomes (YACs). Gene. 1991 Jul 15;103(1):53–59. doi: 10.1016/0378-1119(91)90390-w. [DOI] [PubMed] [Google Scholar]
  32. Strauss W. M., Jaenisch R. Molecular complementation of a collagen mutation in mammalian cells using yeast artificial chromosomes. EMBO J. 1992 Feb;11(2):417–422. doi: 10.1002/j.1460-2075.1992.tb05070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thomas K. R., Capecchi M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987 Nov 6;51(3):503–512. doi: 10.1016/0092-8674(87)90646-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES