Abstract
Comparison of the promoter sequence for the sn-glycerol-3-phosphate dehydrogenase (GPDH, EC 1.1.1.8) genes in mice and humans showed that there were three promoter domains conserved in evolution (1). To study the functional organization of the GPDH promoter, we generated transgenic mice carrying the complete human gene, GPD1. The level of human and mouse GPDH activity was measured in each tissue and the amount of human-mouse GPDH heterodimer was used as a sensitive indicator of cell-specific expression of GPD1. During postnatal development and in adult tissues of the transgenic mice, human GPDH was expressed at levels that corresponded closely to the expression of the endogenous mouse gene, Gdc-1. Surprisingly, deletion of the evolutionarily conserved fat-specific elements (FSE) in the proximal promoter region failed to reveal any alterations in GPD1 expression that were specific for either white or brown adipose tissue.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cook J. R., Kozak L. P. Sn-glycerol-3-phosphate dehydrogenase gene expression during mouse adipocyte development in vivo. Dev Biol. 1982 Aug;92(2):440–448. doi: 10.1016/0012-1606(82)90189-0. [DOI] [PubMed] [Google Scholar]
- Cook K. S., Hunt C. R., Spiegelman B. M. Developmentally regulated mRNAs in 3T3-adipocytes: analysis of transcriptional control. J Cell Biol. 1985 Feb;100(2):514–520. doi: 10.1083/jcb.100.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Distel R. J., Ro H. S., Rosen B. S., Groves D. L., Spiegelman B. M. Nucleoprotein complexes that regulate gene expression in adipocyte differentiation: direct participation of c-fos. Cell. 1987 Jun 19;49(6):835–844. doi: 10.1016/0092-8674(87)90621-0. [DOI] [PubMed] [Google Scholar]
- Djian P., Phillips M., Green H. The activation of specific gene transcription in the adipose conversion of 3T3 cells. J Cell Physiol. 1985 Sep;124(3):554–556. doi: 10.1002/jcp.1041240327. [DOI] [PubMed] [Google Scholar]
- Dobson D. E., Groves D. L., Spiegelman B. M. Nucleotide sequence and hormonal regulation of mouse glycerophosphate dehydrogenase mRNA during adipocyte and muscle cell differentiation. J Biol Chem. 1987 Feb 5;262(4):1804–1809. [PubMed] [Google Scholar]
- Fisher M., Mullen R. J. Neuronal influence on glial enzyme expression: evidence from chimeric mouse cerebellum. Neuron. 1988 Apr;1(2):151–157. doi: 10.1016/0896-6273(88)90199-7. [DOI] [PubMed] [Google Scholar]
- Fisher M. Neuronal influence on glial enzyme expression: evidence from mutant mouse cerebella. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4414–4418. doi: 10.1073/pnas.81.14.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franza B. R., Jr, Rauscher F. J., 3rd, Josephs S. F., Curran T. The Fos complex and Fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science. 1988 Mar 4;239(4844):1150–1153. doi: 10.1126/science.2964084. [DOI] [PubMed] [Google Scholar]
- Gwynn B., Lyford K. A., Birkenmeier E. H. Sequence conservation and structural organization of the glycerol-3-phosphate dehydrogenase promoter in mice and humans. Mol Cell Biol. 1990 Oct;10(10):5244–5256. doi: 10.1128/mcb.10.10.5244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopkinson D. A., Peters J., Harris H. Rare electrophoretic variants of glycerol-3-phosphate dehydrogenase: evidence for two structural gene loci (GPD1 and GPD2). Ann Hum Genet. 1974 May;37(4):477–484. doi: 10.1111/j.1469-1809.1974.tb01852.x. [DOI] [PubMed] [Google Scholar]
- Hunt C. R., Ro J. H., Dobson D. E., Min H. Y., Spiegelman B. M. Adipocyte P2 gene: developmental expression and homology of 5'-flanking sequences among fat cell-specific genes. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3786–3790. doi: 10.1073/pnas.83.11.3786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ireland R. C., Kotarski M. A., Johnston L. A., Stadler U., Birkenmeier E., Kozak L. P. Primary structure of the mouse glycerol-3-phosphate dehydrogenase gene. J Biol Chem. 1986 Sep 5;261(25):11779–11785. [PubMed] [Google Scholar]
- Johnston L. A., Kotarski M. A., Jerry D. J., Kozak L. P. An ubiquitously expressed gene 3.5 kilobases upstream of the glycerol-3-phosphate dehydrogenase gene in mice. Mol Cell Biol. 1989 Mar;9(3):935–945. doi: 10.1128/mcb.9.3.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak L. P. Genetic control of -glycerolphosphate dehydrogenase in mouse brain. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3170–3174. doi: 10.1073/pnas.69.11.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak L. P. Interacting genes control glycerol-3-phosphate dehydrogenase expression in developing cerebellum of the mouse. Genetics. 1985 May;110(1):123–143. doi: 10.1093/genetics/110.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak L. P., Jensen J. T. Genetic and developmental control of multiple forms of L-glycerol 3-phosphate dehydrogenase. J Biol Chem. 1974 Dec 25;249(24):7775–7781. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Phillips M., Djian P., Green H. The nucleotide sequence of three genes participating in the adipose differentiation of 3T3 cells. J Biol Chem. 1986 Aug 15;261(23):10821–10827. [PubMed] [Google Scholar]
- Ratner P. L., Fisher M., Burkart D., Cook J. R., Kozak L. P. The role of mRNA levels and cellular localization in controlling sn-glycerol-3-phosphate dehydrogenase expression in tissues of the mouse. J Biol Chem. 1981 Apr 10;256(7):3576–3579. [PubMed] [Google Scholar]
- Ross S. R., Graves R. A., Greenstein A., Platt K. A., Shyu H. L., Mellovitz B., Spiegelman B. M. A fat-specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9590–9594. doi: 10.1073/pnas.87.24.9590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweetser D. A., Birkenmeier E. H., Hoppe P. C., McKeel D. W., Gordon J. I. Mechanisms underlying generation of gradients in gene expression within the intestine: an analysis using transgenic mice containing fatty acid binding protein-human growth hormone fusion genes. Genes Dev. 1988 Oct;2(10):1318–1332. doi: 10.1101/gad.2.10.1318. [DOI] [PubMed] [Google Scholar]
- Yang V. W., Christy R. J., Cook J. S., Kelly T. J., Lane M. D. Mechanism of regulation of the 422(aP2) gene by cAMP during preadipocyte differentiation. Proc Natl Acad Sci U S A. 1989 May;86(10):3629–3633. doi: 10.1073/pnas.86.10.3629. [DOI] [PMC free article] [PubMed] [Google Scholar]


