Abstract
The title compound, [Co(NH3)6]2Cl5(NO3), was obtained under hydrothermal conditions. The asymmetric unit contains three Co3+ ions, one lying on an inversion center and the other two located at 2/m positions. All Co3+ ions are six-coordinated by NH3 molecules, forming [Co(NH3)6]3+ octahedra, with Co—N distances in the range 1.945 (4)–1.967 (3) Å. The nitrate N atom and one of the O atoms lie at a mirror plane. Among the Cl− anions, one lies in a general position, one on a twofold axis and two on a mirror plane. N—H⋯O and N—H⋯Cl hydrogen bonds link the cations and anions into a three-dimensional network.
Related literature
For metal phosphates and germanates prepared using metal complexes as templates, see: Wang et al. (2003a ▶,b
▶); Pan et al. (2005 ▶, 2008 ▶). For our continued research interest focused on the synthesis of microporous open-framework metal-organic hybride materials by introducing transition metal complexes as templates, see: Pan et al. (2010a ▶,b
▶, 2011 ▶); Tong & Pan (2011 ▶); Liang et al. (2011 ▶). For a structure containing a [Co(NH3)6]3+ cation, see: Han et al. (2012 ▶).
Experimental
Crystal data
[Co(NH3)6]2Cl5(NO3)
M r = 561.53
Monoclinic,
a = 21.118 (4) Å
b = 14.985 (3) Å
c = 6.8491 (11) Å
β = 92.147 (3)°
V = 2165.8 (6) Å3
Z = 4
Mo Kα radiation
μ = 2.18 mm−1
T = 296 K
0.20 × 0.12 × 0.10 mm
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.738, T max = 0.770
7927 measured reflections
2813 independent reflections
1870 reflections with I > 2σ(I)
R int = 0.046
Refinement
R[F 2 > 2σ(F 2)] = 0.050
wR(F 2) = 0.140
S = 1.02
2813 reflections
119 parameters
H-atom parameters constrained
Δρmax = 0.65 e Å−3
Δρmin = −0.71 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021332/yk2056sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021332/yk2056Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯Cl1 | 0.89 | 2.89 | 3.427 (4) | 120 |
| N1—H1A⋯Cl3i | 0.89 | 2.90 | 3.484 (4) | 125 |
| N1—H1B⋯Cl1ii | 0.89 | 2.59 | 3.410 (4) | 154 |
| N1—H1C⋯Cl3iii | 0.89 | 2.63 | 3.431 (4) | 150 |
| N3—H3A⋯O2iv | 0.89 | 2.53 | 3.155 (6) | 128 |
| N4—H4A⋯Cl3v | 0.89 | 2.79 | 3.287 (4) | 117 |
| N4—H4B⋯Cl4 | 0.89 | 2.62 | 3.448 (5) | 155 |
| N4—H4C⋯Cl2v | 0.89 | 2.73 | 3.321 (4) | 125 |
| N5—H5A⋯Cl1vi | 0.89 | 2.77 | 3.375 (4) | 127 |
| N5—H5A⋯Cl4vii | 0.89 | 2.91 | 3.456 (4) | 122 |
| N5—H5B⋯O2vii | 0.89 | 2.17 | 3.048 (5) | 168 |
| N5—H5C⋯Cl3vi | 0.89 | 2.56 | 3.337 (4) | 146 |
| N6—H6A⋯Cl4vii | 0.89 | 2.76 | 3.339 (4) | 124 |
| N6—H6C⋯Cl3viii | 0.89 | 2.93 | 3.445 (4) | 118 |
| N7—H7A⋯Cl4iv | 0.89 | 2.78 | 3.368 (4) | 125 |
| N7—H7B⋯Cl3viii | 0.89 | 2.87 | 3.394 (4) | 119 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
; (vii)
; (viii)
.
Acknowledgments
This work was supported by the Program for New Century Excellent Talents in Universities (NCET-11–0929), the National Natural Science Foundation of China (No. 21101047), the Natural Science Foundation of Hainan Province (No. 211010) and the Priming Scientific Research Foundation of Hainan University (No. kyqd1051).
supplementary crystallographic information
Comment
Rencently, more attention has been paid to transition metal complexes, because they can to be employed as templates in the synthesis of various open-framework materials, including metal phosphates (Wang et al., 2003a,b) and germanates (Pan et al., 2005,2008). Our continued interest has been focused on the synthesis of microporous open-framework metal-organic hybride materials by introducing transition metal complexes as templates (Pan et al., 2010a,b, 2011; Tong & Pan, 2011; Liang et al., 2011). Unexpectedly, the title compound, [Co(NH3)6]2(NO3)Cl5, was obtained.
The title compound is composed of [Co(NH3)6]3+ cations and the counterions Cl- and NO3-, as shown in Fig. 1. The asymmetric part of this crystal structure contains three Co3+ ions; one is located on an inversion center, and the other two are positioned on the twofold rotation axis with center of symmetry (2/m). All Co(III) ions are six coordinated by NH3 molecules to form [Co(NH3)6]3+ cations, having a slightly distorted octahedral geometry, as in the structure of [Co(NH3)6]3[Zn8(HPO4)8(PO4)2](PO4) (Han et al., 2012). The Co—N bond distances are in the range from 1.945 (4) to 1.967 (3) Å. For the counterions, the N8 atom of NO3- anion is located on mirror plane and displays a trigonal geometry by bonded to three O atoms with the N—O distances of 1.234 (6)–1.253 (4) Å. The Cl- anions are located in different positions: inversion center for Cl2, mirror plane for Cl1 and Cl4, and general position for Cl3. The [Co(NH3)6]3+ cations interact with the counterions Cl- and NO3-via hydrogen bonds; the distances of N—H···O hydrogen bonds are in the range 3.048 (5)–3.155 (6) Å, and the distances of N—H···Cl hydrogen bonds lie in the range from 3.287 (4) to 3.484 (4) Å (Table 1), to form an extensive three-dimensional hydrogen-bonding network.
Experimental
In a typical synthesis, a mixture of Cd(NO3)2.4H2O (0.231 g), pyromellitic acid (0.0254 g), [Co(NH3)6]Cl3 (0.03 g), NaOH (0.016 g) and H2O (10 ml) were added in a 20 ml Teflon-lined reactor under autogenous pressure at 100°C for 3 days. Yellow rod-like crystals were obtained.
Refinement
All H atoms were positioned geometrically (N—H = 0.89 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom).
Figures
Fig. 1.
A view of the asymmetric unit of title compound showing the atom labelling scheme. Ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, 1 - y, -z; (ii) -x, y, -z; (iii) x, 1 - y, z; (iv) 1 - x, 1 - y, -z; (v) 1 - x, y, -z; (vi) 1/2 - x, 1/2 - y, 1 - z]. (iv) x, -y + 1, z; (v) -x, -y + 1, -z; (vi) -x, y, -z.
Crystal data
| [Co(NH3)6]2Cl5(NO3) | F(000) = 1160 |
| Mr = 561.53 | Dx = 1.722 Mg m−3 |
| Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2y | Cell parameters from 7927 reflections |
| a = 21.118 (4) Å | θ = 1.7–28.4° |
| b = 14.985 (3) Å | µ = 2.18 mm−1 |
| c = 6.8491 (11) Å | T = 296 K |
| β = 92.147 (3)° | Rod, yellow |
| V = 2165.8 (6) Å3 | 0.2 × 0.12 × 0.10 mm |
| Z = 4 |
Data collection
| Bruker APEXII CCD area-detector diffractometer | 2813 independent reflections |
| Radiation source: fine-focus sealed tube | 1870 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.046 |
| Detector resolution: 83.66 pixels mm-1 | θmax = 28.4°, θmin = 1.7° |
| φ and ω scans | h = −27→28 |
| Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −19→20 |
| Tmin = 0.738, Tmax = 0.770 | l = −6→9 |
| 7927 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.140 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0641P)2 + 4.8344P] where P = (Fo2 + 2Fc2)/3 |
| 2813 reflections | (Δ/σ)max < 0.001 |
| 119 parameters | Δρmax = 0.65 e Å−3 |
| 0 restraints | Δρmin = −0.71 e Å−3 |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Co1 | 0.2500 | 0.2500 | 0.5000 | 0.0193 (2) | |
| N7 | 0.25395 (17) | 0.3197 (3) | 0.7422 (5) | 0.0329 (9) | |
| H7A | 0.2923 | 0.3440 | 0.7585 | 0.040* | |
| H7B | 0.2465 | 0.2842 | 0.8429 | 0.040* | |
| H7C | 0.2249 | 0.3627 | 0.7353 | 0.040* | |
| N6 | 0.16170 (16) | 0.2158 (3) | 0.5415 (5) | 0.0342 (9) | |
| H6A | 0.1477 | 0.1812 | 0.4434 | 0.041* | |
| H6B | 0.1378 | 0.2646 | 0.5463 | 0.041* | |
| H6C | 0.1596 | 0.1861 | 0.6535 | 0.041* | |
| N5 | 0.27844 (19) | 0.1439 (3) | 0.6414 (6) | 0.0401 (10) | |
| H5A | 0.2811 | 0.0984 | 0.5585 | 0.048* | |
| H5B | 0.2509 | 0.1306 | 0.7323 | 0.048* | |
| H5C | 0.3164 | 0.1541 | 0.6982 | 0.048* | |
| Co2 | 0.5000 | 0.5000 | 0.0000 | 0.0212 (3) | |
| Cl4 | 0.66930 (8) | 0.5000 | 0.4229 (2) | 0.0350 (4) | |
| N4 | 0.55640 (18) | 0.5926 (3) | 0.1076 (6) | 0.0411 (10) | |
| H4A | 0.5852 | 0.6062 | 0.0208 | 0.049* | |
| H4B | 0.5758 | 0.5727 | 0.2168 | 0.049* | |
| H4C | 0.5339 | 0.6410 | 0.1341 | 0.049* | |
| N3 | 0.4522 (2) | 0.5000 | 0.2394 (7) | 0.0329 (12) | |
| H3A | 0.4278 | 0.4517 | 0.2435 | 0.040* | |
| H3B | 0.4787 | 0.5000 | 0.3435 | 0.040* | |
| Co3 | 0.0000 | 0.5000 | 0.0000 | 0.0208 (3) | |
| N2 | −0.0927 (2) | 0.5000 | −0.0085 (7) | 0.0289 (11) | |
| H2A | −0.1072 | 0.4517 | −0.0712 | 0.035* | |
| H2B | −0.1075 | 0.5000 | 0.1114 | 0.035* | |
| N1 | 0.00050 (17) | 0.5934 (3) | 0.2019 (5) | 0.0330 (9) | |
| H1A | 0.0403 | 0.6075 | 0.2360 | 0.040* | |
| H1B | −0.0191 | 0.5734 | 0.3061 | 0.040* | |
| H1C | −0.0195 | 0.6415 | 0.1551 | 0.040* | |
| Cl3 | 0.12244 (5) | 0.28432 (8) | 0.00154 (16) | 0.0351 (3) | |
| Cl2 | 0.0000 | 0.19040 (14) | 0.5000 | 0.0485 (5) | |
| Cl1 | 0.11173 (8) | 0.5000 | 0.5167 (2) | 0.0459 (5) | |
| O2 | 0.68054 (15) | 0.5722 (2) | 0.9173 (5) | 0.0392 (8) | |
| N8 | 0.7099 (2) | 0.5000 | 0.9396 (7) | 0.0291 (11) | |
| O1 | 0.7671 (2) | 0.5000 | 0.9832 (8) | 0.0507 (14) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Co1 | 0.0190 (4) | 0.0185 (4) | 0.0206 (4) | 0.0001 (3) | 0.0021 (3) | 0.0002 (3) |
| N7 | 0.032 (2) | 0.039 (2) | 0.028 (2) | −0.0044 (17) | 0.0031 (15) | −0.0072 (15) |
| N6 | 0.0265 (19) | 0.036 (2) | 0.041 (2) | −0.0052 (17) | 0.0084 (16) | −0.0079 (18) |
| N5 | 0.046 (2) | 0.032 (2) | 0.042 (2) | 0.0034 (19) | −0.0037 (18) | 0.0093 (17) |
| Co2 | 0.0179 (5) | 0.0211 (6) | 0.0247 (6) | 0.000 | 0.0025 (4) | 0.000 |
| Cl4 | 0.0419 (9) | 0.0284 (8) | 0.0347 (9) | 0.000 | −0.0006 (7) | 0.000 |
| N4 | 0.033 (2) | 0.044 (3) | 0.047 (2) | −0.0102 (19) | 0.0093 (18) | −0.0124 (19) |
| N3 | 0.027 (3) | 0.043 (3) | 0.028 (3) | 0.000 | 0.005 (2) | 0.000 |
| Co3 | 0.0165 (5) | 0.0220 (6) | 0.0239 (6) | 0.000 | 0.0019 (4) | 0.000 |
| N2 | 0.017 (2) | 0.029 (3) | 0.040 (3) | 0.000 | −0.001 (2) | 0.000 |
| N1 | 0.030 (2) | 0.035 (2) | 0.034 (2) | 0.0027 (17) | −0.0011 (16) | −0.0044 (16) |
| Cl3 | 0.0334 (6) | 0.0315 (6) | 0.0405 (7) | 0.0048 (5) | 0.0037 (5) | 0.0012 (5) |
| Cl2 | 0.0462 (10) | 0.0521 (12) | 0.0478 (11) | 0.000 | 0.0079 (8) | 0.000 |
| Cl1 | 0.0361 (9) | 0.0683 (13) | 0.0337 (9) | 0.000 | 0.0056 (7) | 0.000 |
| O2 | 0.0395 (19) | 0.036 (2) | 0.043 (2) | 0.0092 (15) | 0.0046 (15) | −0.0019 (14) |
| N8 | 0.024 (3) | 0.037 (3) | 0.027 (3) | 0.000 | 0.004 (2) | 0.000 |
| O1 | 0.022 (2) | 0.053 (4) | 0.077 (4) | 0.000 | −0.005 (2) | 0.000 |
Geometric parameters (Å, º)
| Co1—N5i | 1.945 (4) | Co2—N3ii | 1.958 (5) |
| Co1—N5 | 1.945 (4) | N4—H4A | 0.8900 |
| Co1—N7 | 1.960 (3) | N4—H4B | 0.8900 |
| Co1—N7i | 1.960 (3) | N4—H4C | 0.8900 |
| Co1—N6 | 1.965 (3) | N3—H3A | 0.8900 |
| Co1—N6i | 1.965 (3) | N3—H3B | 0.8900 |
| N7—H7A | 0.8900 | Co3—N2 | 1.956 (5) |
| N7—H7B | 0.8900 | Co3—N2v | 1.956 (5) |
| N7—H7C | 0.8900 | Co3—N1 | 1.967 (3) |
| N6—H6A | 0.8900 | Co3—N1vi | 1.967 (3) |
| N6—H6B | 0.8900 | Co3—N1v | 1.967 (3) |
| N6—H6C | 0.8900 | Co3—N1iv | 1.967 (3) |
| N5—H5A | 0.8900 | N2—H2A | 0.8900 |
| N5—H5B | 0.8900 | N2—H2B | 0.8900 |
| N5—H5C | 0.8900 | N1—H1A | 0.8900 |
| Co2—N4 | 1.955 (4) | N1—H1B | 0.8900 |
| Co2—N4ii | 1.955 (4) | N1—H1C | 0.8900 |
| Co2—N4iii | 1.955 (4) | O2—N8 | 1.253 (4) |
| Co2—N4iv | 1.955 (4) | N8—O1 | 1.234 (6) |
| Co2—N3 | 1.958 (5) | N8—O2iv | 1.253 (4) |
| N5i—Co1—N5 | 180.000 (1) | N4iv—Co2—N3 | 90.59 (16) |
| N5i—Co1—N7 | 89.33 (16) | N4—Co2—N3ii | 89.41 (16) |
| N5—Co1—N7 | 90.67 (16) | N4ii—Co2—N3ii | 90.59 (16) |
| N5i—Co1—N7i | 90.67 (16) | N4iii—Co2—N3ii | 90.59 (16) |
| N5—Co1—N7i | 89.33 (16) | N4iv—Co2—N3ii | 89.41 (16) |
| N7—Co1—N7i | 180.0 | N3—Co2—N3ii | 180.000 (1) |
| N5i—Co1—N6 | 90.47 (17) | Co2—N4—H4A | 109.5 |
| N5—Co1—N6 | 89.53 (17) | Co2—N4—H4B | 109.5 |
| N7—Co1—N6 | 91.56 (15) | H4A—N4—H4B | 109.5 |
| N7i—Co1—N6 | 88.44 (15) | Co2—N4—H4C | 109.5 |
| N5i—Co1—N6i | 89.53 (17) | H4A—N4—H4C | 109.5 |
| N5—Co1—N6i | 90.47 (17) | H4B—N4—H4C | 109.5 |
| N7—Co1—N6i | 88.44 (15) | Co2—N3—H3A | 110.1 |
| N7i—Co1—N6i | 91.56 (15) | Co2—N3—H3B | 110.0 |
| N6—Co1—N6i | 180.00 (6) | H3A—N3—H3B | 108.9 |
| Co1—N7—H7A | 109.5 | N2—Co3—N2v | 180.0 |
| Co1—N7—H7B | 109.5 | N2—Co3—N1 | 90.00 (15) |
| H7A—N7—H7B | 109.5 | N2v—Co3—N1 | 90.00 (15) |
| Co1—N7—H7C | 109.5 | N2—Co3—N1vi | 90.00 (15) |
| H7A—N7—H7C | 109.5 | N2v—Co3—N1vi | 90.00 (15) |
| H7B—N7—H7C | 109.5 | N1—Co3—N1vi | 89.3 (2) |
| Co1—N6—H6A | 109.5 | N2—Co3—N1v | 90.00 (15) |
| Co1—N6—H6B | 109.5 | N2v—Co3—N1v | 90.00 (15) |
| H6A—N6—H6B | 109.5 | N1—Co3—N1v | 180.0 (2) |
| Co1—N6—H6C | 109.5 | N1vi—Co3—N1v | 90.7 (2) |
| H6A—N6—H6C | 109.5 | N2—Co3—N1iv | 90.00 (15) |
| H6B—N6—H6C | 109.5 | N2v—Co3—N1iv | 90.00 (15) |
| Co1—N5—H5A | 109.5 | N1—Co3—N1iv | 90.7 (2) |
| Co1—N5—H5B | 109.5 | N1vi—Co3—N1iv | 180.00 (16) |
| H5A—N5—H5B | 109.5 | N1v—Co3—N1iv | 89.3 (2) |
| Co1—N5—H5C | 109.5 | Co3—N2—H2A | 109.9 |
| H5A—N5—H5C | 109.5 | Co3—N2—H2B | 111.0 |
| H5B—N5—H5C | 109.5 | H2A—N2—H2B | 108.6 |
| N4—Co2—N4ii | 180.0 | Co3—N1—H1A | 109.5 |
| N4—Co2—N4iii | 89.6 (3) | Co3—N1—H1B | 109.5 |
| N4ii—Co2—N4iii | 90.4 (3) | H1A—N1—H1B | 109.5 |
| N4—Co2—N4iv | 90.4 (3) | Co3—N1—H1C | 109.5 |
| N4ii—Co2—N4iv | 89.6 (3) | H1A—N1—H1C | 109.5 |
| N4iii—Co2—N4iv | 180.00 (17) | H1B—N1—H1C | 109.5 |
| N4—Co2—N3 | 90.59 (16) | O1—N8—O2iv | 120.3 (3) |
| N4ii—Co2—N3 | 89.41 (16) | O1—N8—O2 | 120.3 (3) |
| N4iii—Co2—N3 | 89.41 (16) | O2iv—N8—O2 | 119.4 (5) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+1, y, −z; (iv) x, −y+1, z; (v) −x, −y+1, −z; (vi) −x, y, −z.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···Cl1 | 0.89 | 2.89 | 3.427 (4) | 120 |
| N1—H1A···Cl3iv | 0.89 | 2.90 | 3.484 (4) | 125 |
| N1—H1B···Cl1vii | 0.89 | 2.59 | 3.410 (4) | 154 |
| N1—H1C···Cl3v | 0.89 | 2.63 | 3.431 (4) | 150 |
| N3—H3A···O2viii | 0.89 | 2.53 | 3.155 (6) | 128 |
| N4—H4A···Cl3ix | 0.89 | 2.79 | 3.287 (4) | 117 |
| N4—H4B···Cl4 | 0.89 | 2.62 | 3.448 (5) | 155 |
| N4—H4C···Cl2ix | 0.89 | 2.73 | 3.321 (4) | 125 |
| N5—H5A···Cl1i | 0.89 | 2.77 | 3.375 (4) | 127 |
| N5—H5A···Cl4x | 0.89 | 2.91 | 3.456 (4) | 122 |
| N5—H5B···O2x | 0.89 | 2.17 | 3.048 (5) | 168 |
| N5—H5C···Cl3i | 0.89 | 2.56 | 3.337 (4) | 146 |
| N6—H6A···Cl4x | 0.89 | 2.76 | 3.339 (4) | 124 |
| N6—H6C···Cl3xi | 0.89 | 2.93 | 3.445 (4) | 118 |
| N7—H7A···Cl4viii | 0.89 | 2.78 | 3.368 (4) | 125 |
| N7—H7B···Cl3xi | 0.89 | 2.87 | 3.394 (4) | 119 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (iv) x, −y+1, z; (v) −x, −y+1, −z; (vii) −x, −y+1, −z+1; (viii) −x+1, −y+1, −z+1; (ix) x+1/2, y+1/2, z; (x) x−1/2, y−1/2, z; (xi) x, y, z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2056).
References
- Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Han, Y. D., Li, Y., Yu, J. H., Pan, Q. H. & Xu, R. R. (2012). Eur. J. Inorg. Chem. pp. 36–39.
- Liang, Z., Wang, F., Wu, Q., Zhi, X. & Pan, Q. (2011). Acta Cryst. E67, m1399. [DOI] [PMC free article] [PubMed]
- Pan, Q. H., Chen, Q. A., Song, W. C., Hu, T. L. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.
- Pan, Q. H., Cheng, Q., Han, Y. D., Hu, T. L. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.
- Pan, Q. H., Li, J. Y., Chen, Q. A., Han, Y. D., Chang, Z., Song, W. C. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453–457.
- Pan, Q. H., Li, J. Y., Ren, X. Y., Wang, Z. P., Li, G. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372.
- Pan, Q. H., Li, J. Y., Yu, J. H., Wang, Y., Fang, Q. R. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Tong, J. & Pan, Q. (2011). Acta Cryst. E67, m579–m580. [DOI] [PMC free article] [PubMed]
- Wang, Y., Yu, J. H., Guo, M. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089–4092. [DOI] [PubMed]
- Wang, Y., Yu, J. H., Li, Y., Shi, Z. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048–5055. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021332/yk2056sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021332/yk2056Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

