Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):i45–i46. doi: 10.1107/S1600536812021332

Bis[hexa­amminecobalt(III)] penta­chloride nitrate

Qihui Wu a, Chunyu Du a, Yang Lv a, Guoliang Chen a, Qinhe Pan a,*
PMCID: PMC3379055  PMID: 22719276

Abstract

The title compound, [Co(NH3)6]2Cl5(NO3), was obtained under hydro­thermal conditions. The asymmetric unit contains three Co3+ ions, one lying on an inversion center and the other two located at 2/m positions. All Co3+ ions are six-coordinated by NH3 mol­ecules, forming [Co(NH3)6]3+ octahedra, with Co—N distances in the range 1.945 (4)–1.967 (3) Å. The nitrate N atom and one of the O atoms lie at a mirror plane. Among the Cl anions, one lies in a general position, one on a twofold axis and two on a mirror plane. N—H⋯O and N—H⋯Cl hydrogen bonds link the cations and anions into a three-dimensional network.

Related literature  

For metal phosphates and germanates prepared using metal complexes as templates, see: Wang et al. (2003a,b ); Pan et al. (2005, 2008). For our continued research inter­est focused on the synthesis of microporous open-framework metal-organic hybride materials by introducing transition metal complexes as templates, see: Pan et al. (2010a,b , 2011); Tong & Pan (2011); Liang et al. (2011). For a structure containing a [Co(NH3)6]3+ cation, see: Han et al. (2012).graphic file with name e-68-00i45-scheme1.jpg

Experimental  

Crystal data  

  • [Co(NH3)6]2Cl5(NO3)

  • M r = 561.53

  • Monoclinic, Inline graphic

  • a = 21.118 (4) Å

  • b = 14.985 (3) Å

  • c = 6.8491 (11) Å

  • β = 92.147 (3)°

  • V = 2165.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 296 K

  • 0.20 × 0.12 × 0.10 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.738, T max = 0.770

  • 7927 measured reflections

  • 2813 independent reflections

  • 1870 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.140

  • S = 1.02

  • 2813 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021332/yk2056sup1.cif

e-68-00i45-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021332/yk2056Isup2.hkl

e-68-00i45-Isup2.hkl (138.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.89 2.89 3.427 (4) 120
N1—H1A⋯Cl3i 0.89 2.90 3.484 (4) 125
N1—H1B⋯Cl1ii 0.89 2.59 3.410 (4) 154
N1—H1C⋯Cl3iii 0.89 2.63 3.431 (4) 150
N3—H3A⋯O2iv 0.89 2.53 3.155 (6) 128
N4—H4A⋯Cl3v 0.89 2.79 3.287 (4) 117
N4—H4B⋯Cl4 0.89 2.62 3.448 (5) 155
N4—H4C⋯Cl2v 0.89 2.73 3.321 (4) 125
N5—H5A⋯Cl1vi 0.89 2.77 3.375 (4) 127
N5—H5A⋯Cl4vii 0.89 2.91 3.456 (4) 122
N5—H5B⋯O2vii 0.89 2.17 3.048 (5) 168
N5—H5C⋯Cl3vi 0.89 2.56 3.337 (4) 146
N6—H6A⋯Cl4vii 0.89 2.76 3.339 (4) 124
N6—H6C⋯Cl3viii 0.89 2.93 3.445 (4) 118
N7—H7A⋯Cl4iv 0.89 2.78 3.368 (4) 125
N7—H7B⋯Cl3viii 0.89 2.87 3.394 (4) 119

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in Universities (NCET-11–0929), the National Natural Science Foundation of China (No. 21101047), the Natural Science Foundation of Hainan Province (No. 211010) and the Priming Scientific Research Foundation of Hainan University (No. kyqd1051).

supplementary crystallographic information

Comment

Rencently, more attention has been paid to transition metal complexes, because they can to be employed as templates in the synthesis of various open-framework materials, including metal phosphates (Wang et al., 2003a,b) and germanates (Pan et al., 2005,2008). Our continued interest has been focused on the synthesis of microporous open-framework metal-organic hybride materials by introducing transition metal complexes as templates (Pan et al., 2010a,b, 2011; Tong & Pan, 2011; Liang et al., 2011). Unexpectedly, the title compound, [Co(NH3)6]2(NO3)Cl5, was obtained.

The title compound is composed of [Co(NH3)6]3+ cations and the counterions Cl- and NO3-, as shown in Fig. 1. The asymmetric part of this crystal structure contains three Co3+ ions; one is located on an inversion center, and the other two are positioned on the twofold rotation axis with center of symmetry (2/m). All Co(III) ions are six coordinated by NH3 molecules to form [Co(NH3)6]3+ cations, having a slightly distorted octahedral geometry, as in the structure of [Co(NH3)6]3[Zn8(HPO4)8(PO4)2](PO4) (Han et al., 2012). The Co—N bond distances are in the range from 1.945 (4) to 1.967 (3) Å. For the counterions, the N8 atom of NO3- anion is located on mirror plane and displays a trigonal geometry by bonded to three O atoms with the N—O distances of 1.234 (6)–1.253 (4) Å. The Cl- anions are located in different positions: inversion center for Cl2, mirror plane for Cl1 and Cl4, and general position for Cl3. The [Co(NH3)6]3+ cations interact with the counterions Cl- and NO3-via hydrogen bonds; the distances of N—H···O hydrogen bonds are in the range 3.048 (5)–3.155 (6) Å, and the distances of N—H···Cl hydrogen bonds lie in the range from 3.287 (4) to 3.484 (4) Å (Table 1), to form an extensive three-dimensional hydrogen-bonding network.

Experimental

In a typical synthesis, a mixture of Cd(NO3)2.4H2O (0.231 g), pyromellitic acid (0.0254 g), [Co(NH3)6]Cl3 (0.03 g), NaOH (0.016 g) and H2O (10 ml) were added in a 20 ml Teflon-lined reactor under autogenous pressure at 100°C for 3 days. Yellow rod-like crystals were obtained.

Refinement

All H atoms were positioned geometrically (N—H = 0.89 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

A view of the asymmetric unit of title compound showing the atom labelling scheme. Ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, 1 - y, -z; (ii) -x, y, -z; (iii) x, 1 - y, z; (iv) 1 - x, 1 - y, -z; (v) 1 - x, y, -z; (vi) 1/2 - x, 1/2 - y, 1 - z]. (iv) x, -y + 1, z; (v) -x, -y + 1, -z; (vi) -x, y, -z.

Crystal data

[Co(NH3)6]2Cl5(NO3) F(000) = 1160
Mr = 561.53 Dx = 1.722 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 7927 reflections
a = 21.118 (4) Å θ = 1.7–28.4°
b = 14.985 (3) Å µ = 2.18 mm1
c = 6.8491 (11) Å T = 296 K
β = 92.147 (3)° Rod, yellow
V = 2165.8 (6) Å3 0.2 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2813 independent reflections
Radiation source: fine-focus sealed tube 1870 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
Detector resolution: 83.66 pixels mm-1 θmax = 28.4°, θmin = 1.7°
φ and ω scans h = −27→28
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −19→20
Tmin = 0.738, Tmax = 0.770 l = −6→9
7927 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0641P)2 + 4.8344P] where P = (Fo2 + 2Fc2)/3
2813 reflections (Δ/σ)max < 0.001
119 parameters Δρmax = 0.65 e Å3
0 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.2500 0.2500 0.5000 0.0193 (2)
N7 0.25395 (17) 0.3197 (3) 0.7422 (5) 0.0329 (9)
H7A 0.2923 0.3440 0.7585 0.040*
H7B 0.2465 0.2842 0.8429 0.040*
H7C 0.2249 0.3627 0.7353 0.040*
N6 0.16170 (16) 0.2158 (3) 0.5415 (5) 0.0342 (9)
H6A 0.1477 0.1812 0.4434 0.041*
H6B 0.1378 0.2646 0.5463 0.041*
H6C 0.1596 0.1861 0.6535 0.041*
N5 0.27844 (19) 0.1439 (3) 0.6414 (6) 0.0401 (10)
H5A 0.2811 0.0984 0.5585 0.048*
H5B 0.2509 0.1306 0.7323 0.048*
H5C 0.3164 0.1541 0.6982 0.048*
Co2 0.5000 0.5000 0.0000 0.0212 (3)
Cl4 0.66930 (8) 0.5000 0.4229 (2) 0.0350 (4)
N4 0.55640 (18) 0.5926 (3) 0.1076 (6) 0.0411 (10)
H4A 0.5852 0.6062 0.0208 0.049*
H4B 0.5758 0.5727 0.2168 0.049*
H4C 0.5339 0.6410 0.1341 0.049*
N3 0.4522 (2) 0.5000 0.2394 (7) 0.0329 (12)
H3A 0.4278 0.4517 0.2435 0.040*
H3B 0.4787 0.5000 0.3435 0.040*
Co3 0.0000 0.5000 0.0000 0.0208 (3)
N2 −0.0927 (2) 0.5000 −0.0085 (7) 0.0289 (11)
H2A −0.1072 0.4517 −0.0712 0.035*
H2B −0.1075 0.5000 0.1114 0.035*
N1 0.00050 (17) 0.5934 (3) 0.2019 (5) 0.0330 (9)
H1A 0.0403 0.6075 0.2360 0.040*
H1B −0.0191 0.5734 0.3061 0.040*
H1C −0.0195 0.6415 0.1551 0.040*
Cl3 0.12244 (5) 0.28432 (8) 0.00154 (16) 0.0351 (3)
Cl2 0.0000 0.19040 (14) 0.5000 0.0485 (5)
Cl1 0.11173 (8) 0.5000 0.5167 (2) 0.0459 (5)
O2 0.68054 (15) 0.5722 (2) 0.9173 (5) 0.0392 (8)
N8 0.7099 (2) 0.5000 0.9396 (7) 0.0291 (11)
O1 0.7671 (2) 0.5000 0.9832 (8) 0.0507 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0190 (4) 0.0185 (4) 0.0206 (4) 0.0001 (3) 0.0021 (3) 0.0002 (3)
N7 0.032 (2) 0.039 (2) 0.028 (2) −0.0044 (17) 0.0031 (15) −0.0072 (15)
N6 0.0265 (19) 0.036 (2) 0.041 (2) −0.0052 (17) 0.0084 (16) −0.0079 (18)
N5 0.046 (2) 0.032 (2) 0.042 (2) 0.0034 (19) −0.0037 (18) 0.0093 (17)
Co2 0.0179 (5) 0.0211 (6) 0.0247 (6) 0.000 0.0025 (4) 0.000
Cl4 0.0419 (9) 0.0284 (8) 0.0347 (9) 0.000 −0.0006 (7) 0.000
N4 0.033 (2) 0.044 (3) 0.047 (2) −0.0102 (19) 0.0093 (18) −0.0124 (19)
N3 0.027 (3) 0.043 (3) 0.028 (3) 0.000 0.005 (2) 0.000
Co3 0.0165 (5) 0.0220 (6) 0.0239 (6) 0.000 0.0019 (4) 0.000
N2 0.017 (2) 0.029 (3) 0.040 (3) 0.000 −0.001 (2) 0.000
N1 0.030 (2) 0.035 (2) 0.034 (2) 0.0027 (17) −0.0011 (16) −0.0044 (16)
Cl3 0.0334 (6) 0.0315 (6) 0.0405 (7) 0.0048 (5) 0.0037 (5) 0.0012 (5)
Cl2 0.0462 (10) 0.0521 (12) 0.0478 (11) 0.000 0.0079 (8) 0.000
Cl1 0.0361 (9) 0.0683 (13) 0.0337 (9) 0.000 0.0056 (7) 0.000
O2 0.0395 (19) 0.036 (2) 0.043 (2) 0.0092 (15) 0.0046 (15) −0.0019 (14)
N8 0.024 (3) 0.037 (3) 0.027 (3) 0.000 0.004 (2) 0.000
O1 0.022 (2) 0.053 (4) 0.077 (4) 0.000 −0.005 (2) 0.000

Geometric parameters (Å, º)

Co1—N5i 1.945 (4) Co2—N3ii 1.958 (5)
Co1—N5 1.945 (4) N4—H4A 0.8900
Co1—N7 1.960 (3) N4—H4B 0.8900
Co1—N7i 1.960 (3) N4—H4C 0.8900
Co1—N6 1.965 (3) N3—H3A 0.8900
Co1—N6i 1.965 (3) N3—H3B 0.8900
N7—H7A 0.8900 Co3—N2 1.956 (5)
N7—H7B 0.8900 Co3—N2v 1.956 (5)
N7—H7C 0.8900 Co3—N1 1.967 (3)
N6—H6A 0.8900 Co3—N1vi 1.967 (3)
N6—H6B 0.8900 Co3—N1v 1.967 (3)
N6—H6C 0.8900 Co3—N1iv 1.967 (3)
N5—H5A 0.8900 N2—H2A 0.8900
N5—H5B 0.8900 N2—H2B 0.8900
N5—H5C 0.8900 N1—H1A 0.8900
Co2—N4 1.955 (4) N1—H1B 0.8900
Co2—N4ii 1.955 (4) N1—H1C 0.8900
Co2—N4iii 1.955 (4) O2—N8 1.253 (4)
Co2—N4iv 1.955 (4) N8—O1 1.234 (6)
Co2—N3 1.958 (5) N8—O2iv 1.253 (4)
N5i—Co1—N5 180.000 (1) N4iv—Co2—N3 90.59 (16)
N5i—Co1—N7 89.33 (16) N4—Co2—N3ii 89.41 (16)
N5—Co1—N7 90.67 (16) N4ii—Co2—N3ii 90.59 (16)
N5i—Co1—N7i 90.67 (16) N4iii—Co2—N3ii 90.59 (16)
N5—Co1—N7i 89.33 (16) N4iv—Co2—N3ii 89.41 (16)
N7—Co1—N7i 180.0 N3—Co2—N3ii 180.000 (1)
N5i—Co1—N6 90.47 (17) Co2—N4—H4A 109.5
N5—Co1—N6 89.53 (17) Co2—N4—H4B 109.5
N7—Co1—N6 91.56 (15) H4A—N4—H4B 109.5
N7i—Co1—N6 88.44 (15) Co2—N4—H4C 109.5
N5i—Co1—N6i 89.53 (17) H4A—N4—H4C 109.5
N5—Co1—N6i 90.47 (17) H4B—N4—H4C 109.5
N7—Co1—N6i 88.44 (15) Co2—N3—H3A 110.1
N7i—Co1—N6i 91.56 (15) Co2—N3—H3B 110.0
N6—Co1—N6i 180.00 (6) H3A—N3—H3B 108.9
Co1—N7—H7A 109.5 N2—Co3—N2v 180.0
Co1—N7—H7B 109.5 N2—Co3—N1 90.00 (15)
H7A—N7—H7B 109.5 N2v—Co3—N1 90.00 (15)
Co1—N7—H7C 109.5 N2—Co3—N1vi 90.00 (15)
H7A—N7—H7C 109.5 N2v—Co3—N1vi 90.00 (15)
H7B—N7—H7C 109.5 N1—Co3—N1vi 89.3 (2)
Co1—N6—H6A 109.5 N2—Co3—N1v 90.00 (15)
Co1—N6—H6B 109.5 N2v—Co3—N1v 90.00 (15)
H6A—N6—H6B 109.5 N1—Co3—N1v 180.0 (2)
Co1—N6—H6C 109.5 N1vi—Co3—N1v 90.7 (2)
H6A—N6—H6C 109.5 N2—Co3—N1iv 90.00 (15)
H6B—N6—H6C 109.5 N2v—Co3—N1iv 90.00 (15)
Co1—N5—H5A 109.5 N1—Co3—N1iv 90.7 (2)
Co1—N5—H5B 109.5 N1vi—Co3—N1iv 180.00 (16)
H5A—N5—H5B 109.5 N1v—Co3—N1iv 89.3 (2)
Co1—N5—H5C 109.5 Co3—N2—H2A 109.9
H5A—N5—H5C 109.5 Co3—N2—H2B 111.0
H5B—N5—H5C 109.5 H2A—N2—H2B 108.6
N4—Co2—N4ii 180.0 Co3—N1—H1A 109.5
N4—Co2—N4iii 89.6 (3) Co3—N1—H1B 109.5
N4ii—Co2—N4iii 90.4 (3) H1A—N1—H1B 109.5
N4—Co2—N4iv 90.4 (3) Co3—N1—H1C 109.5
N4ii—Co2—N4iv 89.6 (3) H1A—N1—H1C 109.5
N4iii—Co2—N4iv 180.00 (17) H1B—N1—H1C 109.5
N4—Co2—N3 90.59 (16) O1—N8—O2iv 120.3 (3)
N4ii—Co2—N3 89.41 (16) O1—N8—O2 120.3 (3)
N4iii—Co2—N3 89.41 (16) O2iv—N8—O2 119.4 (5)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+1, y, −z; (iv) x, −y+1, z; (v) −x, −y+1, −z; (vi) −x, y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1 0.89 2.89 3.427 (4) 120
N1—H1A···Cl3iv 0.89 2.90 3.484 (4) 125
N1—H1B···Cl1vii 0.89 2.59 3.410 (4) 154
N1—H1C···Cl3v 0.89 2.63 3.431 (4) 150
N3—H3A···O2viii 0.89 2.53 3.155 (6) 128
N4—H4A···Cl3ix 0.89 2.79 3.287 (4) 117
N4—H4B···Cl4 0.89 2.62 3.448 (5) 155
N4—H4C···Cl2ix 0.89 2.73 3.321 (4) 125
N5—H5A···Cl1i 0.89 2.77 3.375 (4) 127
N5—H5A···Cl4x 0.89 2.91 3.456 (4) 122
N5—H5B···O2x 0.89 2.17 3.048 (5) 168
N5—H5C···Cl3i 0.89 2.56 3.337 (4) 146
N6—H6A···Cl4x 0.89 2.76 3.339 (4) 124
N6—H6C···Cl3xi 0.89 2.93 3.445 (4) 118
N7—H7A···Cl4viii 0.89 2.78 3.368 (4) 125
N7—H7B···Cl3xi 0.89 2.87 3.394 (4) 119

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (iv) x, −y+1, z; (v) −x, −y+1, −z; (vii) −x, −y+1, −z+1; (viii) −x+1, −y+1, −z+1; (ix) x+1/2, y+1/2, z; (x) x−1/2, y−1/2, z; (xi) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2056).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Han, Y. D., Li, Y., Yu, J. H., Pan, Q. H. & Xu, R. R. (2012). Eur. J. Inorg. Chem. pp. 36–39.
  3. Liang, Z., Wang, F., Wu, Q., Zhi, X. & Pan, Q. (2011). Acta Cryst. E67, m1399. [DOI] [PMC free article] [PubMed]
  4. Pan, Q. H., Chen, Q. A., Song, W. C., Hu, T. L. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.
  5. Pan, Q. H., Cheng, Q., Han, Y. D., Hu, T. L. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.
  6. Pan, Q. H., Li, J. Y., Chen, Q. A., Han, Y. D., Chang, Z., Song, W. C. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453–457.
  7. Pan, Q. H., Li, J. Y., Ren, X. Y., Wang, Z. P., Li, G. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372.
  8. Pan, Q. H., Li, J. Y., Yu, J. H., Wang, Y., Fang, Q. R. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Tong, J. & Pan, Q. (2011). Acta Cryst. E67, m579–m580. [DOI] [PMC free article] [PubMed]
  11. Wang, Y., Yu, J. H., Guo, M. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089–4092. [DOI] [PubMed]
  12. Wang, Y., Yu, J. H., Li, Y., Shi, Z. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048–5055. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021332/yk2056sup1.cif

e-68-00i45-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021332/yk2056Isup2.hkl

e-68-00i45-Isup2.hkl (138.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES