Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):m744. doi: 10.1107/S160053681201968X

4-(Dimethyl­amino)­pyridinium tetra­chlorido(pyridine-2-carboxyl­ato-κ2 N,O)stannate(IV)

Ezzatollah Najafi a, Mostafa M Amini a, Seik Weng Ng b,c,*
PMCID: PMC3379084  PMID: 22719305

Abstract

The reaction of 4-(dimethyl­amino)­pyridine, picolinic acid and stannic chloride yields the title salt, (C7H11N2)[SnCl4(C6H4NO2)], in which the SnIV atom is N,O-chelated by the picolinate ion in a cis-SnNOCl4 octa­hedral geometry. The cation is linked to the anion by an N—H⋯O hydrogen bond.

Related literature  

For 4-(dimethyl­amino)­pyridinium tetra­chlorido(quinoline-2-carboxyl­ato)stannate, see: Najafi et al. (2011).graphic file with name e-68-0m744-scheme1.jpg

Experimental  

Crystal data  

  • (C7H11N2)[SnCl4(C6H4NO2)]

  • M r = 505.77

  • Triclinic, Inline graphic

  • a = 7.6658 (2) Å

  • b = 9.8948 (4) Å

  • c = 13.5722 (6) Å

  • α = 69.485 (4)°

  • β = 83.159 (3)°

  • γ = 67.900 (3)°

  • V = 893.25 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.580, T max = 0.686

  • 12966 measured reflections

  • 4109 independent reflections

  • 3744 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.049

  • S = 1.02

  • 4109 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201968X/bt5909sup1.cif

e-68-0m744-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201968X/bt5909Isup2.hkl

e-68-0m744-Isup2.hkl (201.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.87 (1) 1.93 (1) 2.802 (2) 176 (2)

Acknowledgments

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

supplementary crystallographic information

Comment

A previous study reported 4-(dimethylamino)pyridinium tetrachlorido(quinoline-2-carboxylato)stannate, which was synthesized by the reaction of 4-(dimethylamino)pyridine, quinoline-2-carboxylic acid and stannic chloride in methanol (Najafi et al., 2011). The reaction with picolinic acid in place of quinoline-2-carboxylic acid yielded the analogous salt, (C7H11N2)[SnCl4(C6H4NO2)] (Scheme I). The SnIV atom is N,O-chelated by the picolinate ion in a cis-SnNOCl4 octahedral geometry (Fig. 1). The cation is linked to the anion by an N–H···O hydrogen bond (Table 1).

Experimental

Stannic chloride pentahydrate (0.35 g, 1 mmol), picolinic acid (0.12 g, 1 mmol) and 4-(dimethylamino)pyridine (0.12 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The pyridinium H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of N–H 0.88±0.01 Å.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of (C7H11N2)[SnCl4(C6H4NO2)] at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

(C7H11N2)[SnCl4(C6H4NO2)] Z = 2
Mr = 505.77 F(000) = 496
Triclinic, P1 Dx = 1.880 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.6658 (2) Å Cell parameters from 8614 reflections
b = 9.8948 (4) Å θ = 2.4–27.5°
c = 13.5722 (6) Å µ = 2.04 mm1
α = 69.485 (4)° T = 100 K
β = 83.159 (3)° Prism, colorless
γ = 67.900 (3)° 0.30 × 0.25 × 0.20 mm
V = 893.25 (6) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4109 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3744 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.029
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −12→12
Tmin = 0.580, Tmax = 0.686 l = −17→17
12966 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.1127P] where P = (Fo2 + 2Fc2)/3
4109 reflections (Δ/σ)max = 0.002
214 parameters Δρmax = 0.61 e Å3
1 restraint Δρmin = −0.41 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.471694 (16) 0.931155 (14) 0.787934 (10) 0.01225 (5)
Cl1 0.41910 (7) 1.16043 (5) 0.82535 (4) 0.01887 (11)
Cl2 0.63070 (7) 0.97801 (6) 0.62519 (4) 0.01884 (11)
Cl3 0.76267 (6) 0.79583 (6) 0.88640 (4) 0.01957 (11)
Cl4 0.16639 (6) 1.04910 (5) 0.70014 (4) 0.01687 (10)
O1 0.48413 (18) 0.72139 (15) 0.77597 (11) 0.0164 (3)
O2 0.3917 (2) 0.51987 (16) 0.84279 (12) 0.0231 (3)
N1 0.3269 (2) 0.83176 (18) 0.93069 (12) 0.0137 (3)
N2 0.6230 (2) 0.5870 (2) 0.61853 (14) 0.0184 (4)
H2 0.574 (3) 0.630 (3) 0.6665 (15) 0.038 (7)*
N3 0.8688 (2) 0.35910 (18) 0.40725 (13) 0.0153 (3)
C1 0.3977 (3) 0.6389 (2) 0.84580 (16) 0.0159 (4)
C2 0.3057 (3) 0.7014 (2) 0.93305 (15) 0.0155 (4)
C3 0.2055 (3) 0.6298 (2) 1.01141 (17) 0.0217 (5)
H3 0.1910 0.5382 1.0122 0.026*
C4 0.1268 (3) 0.6952 (3) 1.08887 (17) 0.0270 (5)
H4 0.0545 0.6500 1.1428 0.032*
C5 0.1535 (3) 0.8254 (3) 1.08742 (16) 0.0235 (5)
H5 0.1024 0.8694 1.1412 0.028*
C6 0.2552 (3) 0.8922 (2) 1.00731 (15) 0.0178 (4)
H6 0.2744 0.9819 1.0066 0.021*
C7 0.6389 (3) 0.4385 (2) 0.64189 (16) 0.0176 (4)
H7 0.5927 0.3883 0.7070 0.021*
C8 0.7198 (2) 0.3592 (2) 0.57414 (15) 0.0153 (4)
H8 0.7304 0.2546 0.5922 0.018*
C9 0.7888 (2) 0.4335 (2) 0.47584 (15) 0.0137 (4)
C10 0.7676 (3) 0.5896 (2) 0.45468 (16) 0.0159 (4)
H10 0.8102 0.6444 0.3900 0.019*
C11 0.6865 (3) 0.6614 (2) 0.52659 (17) 0.0183 (4)
H11 0.6745 0.7657 0.5117 0.022*
C12 0.8845 (3) 0.1993 (2) 0.42939 (17) 0.0213 (5)
H12A 0.9601 0.1329 0.4937 0.032*
H12B 0.9454 0.1647 0.3704 0.032*
H12C 0.7585 0.1933 0.4390 0.032*
C13 0.9392 (3) 0.4362 (2) 0.30663 (16) 0.0201 (4)
H13A 1.0157 0.4893 0.3186 0.030*
H13B 0.8327 0.5118 0.2599 0.030*
H13C 1.0164 0.3592 0.2741 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01423 (8) 0.01017 (8) 0.01266 (8) −0.00471 (5) 0.00094 (5) −0.00403 (5)
Cl1 0.0237 (2) 0.0125 (2) 0.0218 (3) −0.00547 (19) −0.00284 (19) −0.0074 (2)
Cl2 0.0212 (2) 0.0168 (2) 0.0171 (3) −0.00816 (19) 0.00602 (18) −0.00436 (19)
Cl3 0.0165 (2) 0.0175 (2) 0.0221 (3) −0.00282 (19) −0.00390 (18) −0.0058 (2)
Cl4 0.0166 (2) 0.0169 (2) 0.0167 (2) −0.00586 (19) −0.00196 (17) −0.00459 (19)
O1 0.0222 (7) 0.0122 (7) 0.0173 (7) −0.0088 (6) 0.0041 (5) −0.0062 (6)
O2 0.0294 (8) 0.0166 (8) 0.0270 (9) −0.0130 (6) 0.0004 (6) −0.0063 (6)
N1 0.0137 (8) 0.0129 (8) 0.0121 (8) −0.0034 (6) −0.0013 (6) −0.0025 (7)
N2 0.0170 (8) 0.0200 (9) 0.0193 (9) −0.0035 (7) −0.0013 (7) −0.0105 (8)
N3 0.0178 (8) 0.0118 (8) 0.0167 (9) −0.0054 (7) 0.0020 (6) −0.0054 (7)
C1 0.0149 (9) 0.0134 (10) 0.0178 (10) −0.0052 (8) −0.0041 (7) −0.0019 (8)
C2 0.0136 (9) 0.0131 (10) 0.0156 (10) −0.0032 (8) −0.0040 (7) −0.0001 (8)
C3 0.0189 (10) 0.0203 (11) 0.0214 (11) −0.0093 (8) −0.0026 (8) 0.0020 (9)
C4 0.0186 (10) 0.0331 (13) 0.0181 (12) −0.0088 (9) 0.0027 (8) 0.0032 (10)
C5 0.0190 (10) 0.0286 (12) 0.0143 (11) −0.0009 (9) −0.0011 (8) −0.0050 (9)
C6 0.0168 (10) 0.0197 (11) 0.0133 (10) −0.0028 (8) −0.0017 (7) −0.0047 (8)
C7 0.0144 (9) 0.0201 (11) 0.0168 (10) −0.0071 (8) −0.0009 (7) −0.0031 (8)
C8 0.0138 (9) 0.0125 (10) 0.0177 (10) −0.0052 (8) −0.0010 (7) −0.0018 (8)
C9 0.0105 (9) 0.0130 (10) 0.0165 (10) −0.0035 (7) −0.0027 (7) −0.0036 (8)
C10 0.0174 (9) 0.0120 (10) 0.0179 (10) −0.0060 (8) −0.0029 (7) −0.0027 (8)
C11 0.0177 (10) 0.0120 (10) 0.0244 (11) −0.0036 (8) −0.0062 (8) −0.0048 (8)
C12 0.0227 (10) 0.0138 (10) 0.0289 (12) −0.0058 (8) 0.0011 (9) −0.0099 (9)
C13 0.0208 (10) 0.0208 (11) 0.0170 (11) −0.0067 (9) 0.0030 (8) −0.0059 (9)

Geometric parameters (Å, º)

Sn1—O1 2.1041 (13) C4—C5 1.372 (3)
Sn1—N1 2.2194 (16) C4—H4 0.9500
Sn1—Cl1 2.3743 (5) C5—C6 1.381 (3)
Sn1—Cl2 2.3761 (5) C5—H5 0.9500
Sn1—Cl3 2.4006 (5) C6—H6 0.9500
Sn1—Cl4 2.4277 (5) C7—C8 1.359 (3)
O1—C1 1.311 (2) C7—H7 0.9500
O2—C1 1.210 (2) C8—C9 1.427 (3)
N1—C6 1.339 (2) C8—H8 0.9500
N1—C2 1.348 (3) C9—C10 1.416 (3)
N2—C11 1.348 (3) C10—C11 1.361 (3)
N2—C7 1.350 (3) C10—H10 0.9500
N2—H2 0.874 (10) C11—H11 0.9500
N3—C9 1.338 (2) C12—H12A 0.9800
N3—C12 1.462 (3) C12—H12B 0.9800
N3—C13 1.464 (2) C12—H12C 0.9800
C1—C2 1.506 (3) C13—H13A 0.9800
C2—C3 1.382 (3) C13—H13B 0.9800
C3—C4 1.386 (3) C13—H13C 0.9800
C3—H3 0.9500
O1—Sn1—N1 75.84 (6) C5—C4—H4 120.1
O1—Sn1—Cl1 169.89 (4) C3—C4—H4 120.1
N1—Sn1—Cl1 94.27 (4) C4—C5—C6 119.6 (2)
O1—Sn1—Cl2 88.75 (4) C4—C5—H5 120.2
N1—Sn1—Cl2 164.57 (4) C6—C5—H5 120.2
Cl1—Sn1—Cl2 101.090 (18) N1—C6—C5 120.7 (2)
O1—Sn1—Cl3 89.31 (4) N1—C6—H6 119.6
N1—Sn1—Cl3 88.57 (4) C5—C6—H6 119.6
Cl1—Sn1—Cl3 92.581 (18) N2—C7—C8 121.32 (19)
Cl2—Sn1—Cl3 92.190 (18) N2—C7—H7 119.3
O1—Sn1—Cl4 87.20 (4) C8—C7—H7 119.3
N1—Sn1—Cl4 86.38 (4) C7—C8—C9 119.91 (19)
Cl1—Sn1—Cl4 90.124 (17) C7—C8—H8 120.0
Cl2—Sn1—Cl4 92.055 (17) C9—C8—H8 120.0
Cl3—Sn1—Cl4 174.439 (17) N3—C9—C10 121.88 (18)
C1—O1—Sn1 119.22 (12) N3—C9—C8 121.49 (18)
C6—N1—C2 120.02 (17) C10—C9—C8 116.63 (18)
C6—N1—Sn1 126.65 (14) C11—C10—C9 120.29 (19)
C2—N1—Sn1 113.24 (12) C11—C10—H10 119.9
C11—N2—C7 120.66 (18) C9—C10—H10 119.9
C11—N2—H2 122.3 (18) N2—C11—C10 121.18 (19)
C7—N2—H2 117.0 (18) N2—C11—H11 119.4
C9—N3—C12 120.98 (17) C10—C11—H11 119.4
C9—N3—C13 121.09 (17) N3—C12—H12A 109.5
C12—N3—C13 117.91 (16) N3—C12—H12B 109.5
O2—C1—O1 123.64 (18) H12A—C12—H12B 109.5
O2—C1—C2 121.19 (18) N3—C12—H12C 109.5
O1—C1—C2 115.16 (17) H12A—C12—H12C 109.5
N1—C2—C3 121.61 (19) H12B—C12—H12C 109.5
N1—C2—C1 116.16 (17) N3—C13—H13A 109.5
C3—C2—C1 122.22 (19) N3—C13—H13B 109.5
C2—C3—C4 118.2 (2) H13A—C13—H13B 109.5
C2—C3—H3 120.9 N3—C13—H13C 109.5
C4—C3—H3 120.9 H13A—C13—H13C 109.5
C5—C4—C3 119.8 (2) H13B—C13—H13C 109.5
N1—Sn1—O1—C1 4.83 (13) O1—C1—C2—N1 −1.6 (2)
Cl1—Sn1—O1—C1 −7.3 (3) O2—C1—C2—C3 −2.2 (3)
Cl2—Sn1—O1—C1 −174.26 (13) O1—C1—C2—C3 178.52 (17)
Cl3—Sn1—O1—C1 93.53 (13) N1—C2—C3—C4 −0.3 (3)
Cl4—Sn1—O1—C1 −82.14 (13) C1—C2—C3—C4 179.61 (17)
O1—Sn1—N1—C6 178.01 (16) C2—C3—C4—C5 −1.5 (3)
Cl1—Sn1—N1—C6 −4.12 (15) C3—C4—C5—C6 1.5 (3)
Cl2—Sn1—N1—C6 −178.59 (11) C2—N1—C6—C5 −2.2 (3)
Cl3—Sn1—N1—C6 88.36 (15) Sn1—N1—C6—C5 174.16 (13)
Cl4—Sn1—N1—C6 −93.97 (15) C4—C5—C6—N1 0.4 (3)
O1—Sn1—N1—C2 −5.40 (12) C11—N2—C7—C8 0.3 (3)
Cl1—Sn1—N1—C2 172.47 (12) N2—C7—C8—C9 −0.4 (3)
Cl2—Sn1—N1—C2 −2.0 (2) C12—N3—C9—C10 −178.27 (17)
Cl3—Sn1—N1—C2 −95.05 (12) C13—N3—C9—C10 0.2 (3)
Cl4—Sn1—N1—C2 82.62 (12) C12—N3—C9—C8 1.5 (3)
Sn1—O1—C1—O2 177.24 (15) C13—N3—C9—C8 −179.96 (16)
Sn1—O1—C1—C2 −3.5 (2) C7—C8—C9—N3 −179.87 (17)
C6—N1—C2—C3 2.2 (3) C7—C8—C9—C10 −0.1 (3)
Sn1—N1—C2—C3 −174.69 (14) N3—C9—C10—C11 −179.60 (17)
C6—N1—C2—C1 −177.72 (16) C8—C9—C10—C11 0.6 (3)
Sn1—N1—C2—C1 5.44 (19) C7—N2—C11—C10 0.3 (3)
O2—C1—C2—N1 177.67 (17) C9—C10—C11—N2 −0.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1 0.87 (1) 1.93 (1) 2.802 (2) 176 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5909).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1224. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201968X/bt5909sup1.cif

e-68-0m744-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201968X/bt5909Isup2.hkl

e-68-0m744-Isup2.hkl (201.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES