Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 12;68(Pt 6):m765. doi: 10.1107/S1600536812020326

Bis{N 2,N 6-bis­[(pyridin-3-yl)meth­yl]pyridine-2,6-dicarboxamide-κN}bis­(methanol-κO)bis­(thio­cyanato-κN)cobalt(II)

Guang-Rui Yang a,*, Juan Ren b, Guo-Ting Li a
PMCID: PMC3379100  PMID: 22719321

Abstract

In the title compound, [Co(NCS)2(C19H17N5O2)2(CH3OH)2], the CoII atom lies on an inversion center and is coordinated by two isothio­cyanate N atoms, two O atoms of methanol mol­ecules and two pyridine N atoms in a slightly distorted octa­hedral environment. Inter­molecular O—H⋯O and N—H⋯N hydrogen bonds join the complex mol­ecules into layers parallel to the bc plane.

Related literature  

For the coordination chemistry of pyridyl­carboxamides, see: Thompson (2002); Wu et al. (2008). For the architectures of complexes with pyridyl­carboxamide ligands and various metal ions, see: Uemura et al. (2002); Burchell et al. (2006).graphic file with name e-68-0m765-scheme1.jpg

Experimental  

Crystal data  

  • [Co(NCS)2(C19H17N5O2)2(CH4O)2]

  • M r = 933.93

  • Monoclinic, Inline graphic

  • a = 9.6728 (19) Å

  • b = 17.631 (4) Å

  • c = 13.041 (3) Å

  • β = 100.13 (3)°

  • V = 2189.4 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.18 mm

Data collection  

  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.892, T max = 0.914

  • 21676 measured reflections

  • 3803 independent reflections

  • 3435 reflections with I > 2σ(I)

  • R int = 0.049

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.101

  • S = 1.15

  • 3803 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020326/yk2057sup1.cif

e-68-0m765-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020326/yk2057Isup2.hkl

e-68-0m765-Isup2.hkl (186.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—N6 2.074 (2)
Co1—O3 2.134 (2)
Co1—N4 2.162 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N5i 0.88 2.18 2.980 (3) 151
O3—H1⋯O2ii 0.76 (3) 1.94 (3) 2.679 (3) 163 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of China.

supplementary crystallographic information

Comment

Pyridylcarboxamides derived from carboxylic acids form a class of spectacularly multidentate heterocyclic ligands and hold an important position in biochemistry and coordination chemistry (Thompson, 2002; Wu et al., 2008). Over the last decades, several research groups worldwide have provided a wide range of structural motifs from isolated macrocycles, helicates to dynamic porous frameworks based on pyridylcarboxamide ligands (Uemura, et al., 2002; Burchell, et al., 2006). In course of such studies, we synthesized the symmetric multifunctional ligand N2,N6-bis((pyridin-3-yl)methyl)pyridine-2,6-dicarboxamide (BPDA) and prepared complexes of BPDA with some metal ions. Here we present the structure of such complex, [Co(BPDA)2(CH4O)2(SCN)2] (1).

The title compound is a mononuclear complex, where the Co2+ ion lies at the inversion center, thus the asymmetric unit consists of Co atom, one BPDA, one methanol molecule, and one SCN- anion (Fig. 1). In (1) the coordination center is ligated by two isothiocyanato N atoms, two methanol O atoms, and two BPDA acting as monodentate ligands through their pyridyl N atoms. The octahedral coordination environment is slightly distorted, the largest deviation of coordination angles from idealized values are 1.59 (9) °.

Further aggregation of complex molecules is formed by the multiple hydrogen-bonding between the dicarboxamide groups of BPDA (as donors) and the uncoordinated pyridyl groups of other BPDA (as acceptors) as well as between the coordination methanol molecules (as donors) and the dicarboxamide groups of BPDA (as acceptors) (Table 2). Consequently, monomers are linked by O—H···O and N—H···N hydrogen bonds into a two-dimensional network parallel to the bc plane (Fig. 2). The layer structure is stabilized by face-to-face π···π stacking interactions between adjacent central pyridine rings of BPDA with a centroid to centroid distance of 3.793 (2) Å. Notably, that the ligand BPDA in (1) have pseudo-C2 symmetry and adopts helical conformation with the dihedral angles of the pendant pyridyl groups with the central pyridine ring of 76.1 (3) and 75.6 (3) °, respectively.

Experimental

Synthesis of BPDA ligand. A mixture of 2,6-pyridinedicarboxylic acid (10 g, 60 mmol) and thionyl chloride (75 ml) was heated with reflux for 6 h under anhydrous condition, and then excess thionyl chloride was removed by rotary evaporation. The resulting white solid pyridine-2,6-dicarboyl dichloride was dissolved in dry CH2Cl2 (50 ml), to which a solution of 3-(aminomethyl)pyridine (13 g, 120 mmol) and triethylamine (24 ml) in dry CH2Cl2 (70 ml) was added dropwise with continuous stirring in an ice-bath. Stirred at room temperature for another hour, the mixture was washed with water (500 ml). The separated organic phase was dried with magnesium sulfate, and the solvent was removed by rotary evaporation. After recrystallization from alcohol/water (2:1), white crystals of BPDA were obtained (Yield: 70%). Selected IR (cm-1, KBr pellet): 3551(m), 3305(s), 3055(m), 2925(m), 1670(vs), 1593(m), 1542(vs), 1478(m), 1425(m), 1313(m), 1258(m), 1175(m), 1076(m), 1000(s), 864(m), 770(s), 679(m), 614(w).

The title compound (1) was prepared according to the following process. A solution of BPDA (69.4 mg, 0.2 mmol) in DMF (5 ml) was dropwise added into a solution of CoSO4.6H2O (28.1 mg, 0.1 mmol) in methanol (5 ml), and then a solution of KSCN (19.4 mg, 0.2 mmol) in methanol (5 ml) was dropwise added into the above mixture. With stirring for 30 minutes, the resulting mixture was filtered. The filtrate was allowed to evaporate at room temperature for two days, and pink crystals were obtain in 48% yield. Selected IR (cm-1, KBr pellet): 3351(m), 2072(vs), 1670(vs), 1534(vs), 1437(m), 1087(m), 750(m), 709(m).

Refinement

Two very strong reflections, (2 1 1) and (-1 4 1), were omitted because of intensity overflow. All H atoms attached to the C and N atoms were positioned geometrically at distances 0.98 Å (CH3), 0.99 Å (CH2), 0.95 Å (CH) and 0.88 Å (NH) and refined using a riding model with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(Cmethyl). The positional parameters of the H atom attached to oxygen were refined freely, and at the last stage of the refinement they were restrained with the H—O = 0.82 (3) Å and with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

Diagram of the title compound with atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level. Symmetry code: (i) -x, -y, -z + 1.

Fig. 2.

Fig. 2.

View of the two-dimensional network in the title compound formed by O—H···O and N—H···N hydrogen bonds.

Crystal data

[Co(NCS)2(C19H17N5O2)2(CH4O)2] F(000) = 970
Mr = 933.93 Dx = 1.417 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4895 reflections
a = 9.6728 (19) Å θ = 2.1–30.8°
b = 17.631 (4) Å µ = 0.55 mm1
c = 13.041 (3) Å T = 293 K
β = 100.13 (3)° Block, pink
V = 2189.4 (8) Å3 0.22 × 0.21 × 0.18 mm
Z = 2

Data collection

Siemens SMART CCD diffractometer 3803 independent reflections
Radiation source: fine-focus sealed tube 3435 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.049
ω scan θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.892, Tmax = 0.914 k = −20→20
21676 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.829P] where P = (Fo2 + 2Fc2)/3
3803 reflections (Δ/σ)max < 0.001
291 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.0000 0.0000 0.5000 0.03328 (16)
S1 −0.19041 (9) 0.20444 (5) 0.66597 (7) 0.0607 (3)
O1 0.3791 (3) −0.10454 (13) 0.85021 (19) 0.0727 (7)
O2 0.0978 (2) 0.10649 (12) 1.22010 (16) 0.0622 (6)
O3 −0.0365 (2) 0.08401 (12) 0.38047 (17) 0.0472 (5)
N1 0.2436 (2) 0.02348 (12) 1.01554 (16) 0.0373 (5)
N2 0.3961 (2) 0.02276 (14) 0.86373 (18) 0.0463 (6)
H2A 0.3683 0.0635 0.8935 0.056*
N3 0.2057 (2) 0.16022 (13) 1.09943 (17) 0.0443 (6)
H3A 0.2468 0.1532 1.0451 0.053*
N4 0.2142 (2) 0.03865 (13) 0.54496 (17) 0.0397 (5)
N5 0.3318 (3) 0.30281 (16) 1.4128 (2) 0.0604 (7)
N6 −0.0655 (3) 0.07304 (14) 0.60659 (18) 0.0458 (6)
C1 0.3501 (3) −0.04486 (18) 0.8894 (2) 0.0471 (7)
C2 0.2582 (3) −0.04329 (16) 0.9707 (2) 0.0409 (7)
C3 0.1951 (3) −0.10950 (17) 0.9980 (2) 0.0533 (8)
H3 0.2049 −0.1558 0.9628 0.064*
C4 0.1183 (3) −0.10634 (19) 1.0772 (3) 0.0583 (9)
H4 0.0753 −0.1508 1.0983 0.070*
C5 0.1043 (3) −0.03805 (18) 1.1255 (2) 0.0497 (8)
H5 0.0521 −0.0346 1.1806 0.060*
C6 0.1676 (3) 0.02553 (15) 1.0922 (2) 0.0386 (7)
C7 0.1543 (3) 0.10093 (17) 1.1426 (2) 0.0419 (7)
C8 0.4895 (3) 0.0323 (2) 0.7894 (2) 0.0536 (8)
H8A 0.5457 −0.0145 0.7886 0.064*
H8B 0.5554 0.0742 0.8134 0.064*
C9 0.4171 (3) 0.04924 (16) 0.6792 (2) 0.0405 (7)
C10 0.2796 (3) 0.02987 (16) 0.6441 (2) 0.0420 (7)
H10 0.2275 0.0090 0.6926 0.050*
C11 0.2886 (3) 0.06854 (17) 0.4779 (2) 0.0509 (8)
H11 0.2453 0.0745 0.4071 0.061*
C12 0.4252 (4) 0.0909 (2) 0.5080 (3) 0.0633 (9)
H12 0.4747 0.1132 0.4588 0.076*
C13 0.4904 (3) 0.08126 (19) 0.6091 (3) 0.0566 (9)
H13 0.5853 0.0965 0.6306 0.068*
C14 0.1958 (4) 0.23665 (17) 1.1399 (2) 0.0537 (8)
H14A 0.0988 0.2452 1.1519 0.064*
H14B 0.2145 0.2736 1.0867 0.064*
C15 0.2965 (3) 0.25142 (15) 1.2399 (2) 0.0419 (7)
C16 0.4374 (4) 0.23449 (18) 1.2524 (3) 0.0594 (9)
H16 0.4747 0.2111 1.1975 0.071*
C17 0.5232 (4) 0.2516 (2) 1.3443 (3) 0.0665 (10)
H17 0.6207 0.2403 1.3541 0.080*
C18 0.4669 (4) 0.28538 (19) 1.4224 (3) 0.0620 (9)
H18 0.5273 0.2968 1.4861 0.074*
C19 0.2503 (3) 0.28563 (17) 1.3221 (2) 0.0522 (8)
H19 0.1533 0.2980 1.3139 0.063*
C20 −0.1081 (5) 0.1531 (2) 0.3779 (3) 0.0936 (15)
H20A −0.1899 0.1473 0.4122 0.140*
H20B −0.1394 0.1686 0.3053 0.140*
H20C −0.0453 0.1919 0.4143 0.140*
C21 −0.1174 (3) 0.12750 (16) 0.6318 (2) 0.0387 (6)
H1 0.005 (3) 0.0815 (17) 0.336 (2) 0.045 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0331 (3) 0.0375 (3) 0.0294 (3) 0.0044 (2) 0.0059 (2) 0.0039 (2)
S1 0.0654 (6) 0.0427 (5) 0.0790 (6) 0.0000 (4) 0.0261 (5) −0.0131 (4)
O1 0.0898 (19) 0.0547 (14) 0.0772 (17) 0.0137 (13) 0.0244 (14) −0.0174 (13)
O2 0.0804 (17) 0.0688 (15) 0.0449 (13) 0.0054 (12) 0.0318 (12) 0.0063 (11)
O3 0.0517 (13) 0.0519 (13) 0.0415 (12) 0.0129 (10) 0.0179 (11) 0.0156 (10)
N1 0.0372 (13) 0.0400 (13) 0.0322 (12) 0.0034 (10) −0.0006 (10) −0.0006 (10)
N2 0.0466 (15) 0.0544 (16) 0.0378 (13) 0.0025 (12) 0.0067 (11) −0.0090 (11)
N3 0.0574 (16) 0.0449 (14) 0.0341 (13) −0.0024 (12) 0.0176 (12) −0.0015 (11)
N4 0.0358 (13) 0.0479 (14) 0.0352 (13) −0.0013 (11) 0.0063 (10) 0.0022 (11)
N5 0.0644 (19) 0.0654 (18) 0.0547 (17) −0.0038 (15) 0.0195 (15) −0.0203 (14)
N6 0.0497 (15) 0.0484 (15) 0.0415 (14) 0.0059 (12) 0.0143 (12) −0.0012 (12)
C1 0.0476 (18) 0.0490 (19) 0.0406 (17) 0.0103 (15) −0.0035 (14) −0.0062 (15)
C2 0.0404 (16) 0.0441 (17) 0.0344 (15) 0.0043 (13) −0.0043 (12) 0.0014 (13)
C3 0.056 (2) 0.0406 (18) 0.057 (2) 0.0008 (15) −0.0057 (16) −0.0021 (15)
C4 0.060 (2) 0.051 (2) 0.062 (2) −0.0100 (16) 0.0035 (17) 0.0104 (17)
C5 0.0493 (18) 0.057 (2) 0.0419 (17) −0.0049 (15) 0.0047 (14) 0.0100 (15)
C6 0.0362 (15) 0.0459 (17) 0.0321 (15) 0.0021 (13) 0.0016 (12) 0.0063 (12)
C7 0.0413 (16) 0.0553 (19) 0.0288 (15) 0.0063 (14) 0.0057 (13) 0.0040 (13)
C8 0.0359 (17) 0.077 (2) 0.0457 (18) −0.0008 (16) 0.0012 (14) −0.0087 (16)
C9 0.0336 (15) 0.0451 (16) 0.0421 (16) 0.0006 (13) 0.0049 (13) −0.0066 (13)
C10 0.0400 (16) 0.0530 (18) 0.0337 (15) −0.0002 (14) 0.0082 (13) 0.0005 (13)
C11 0.0484 (18) 0.062 (2) 0.0426 (18) −0.0015 (16) 0.0094 (15) 0.0125 (15)
C12 0.057 (2) 0.080 (2) 0.058 (2) −0.0173 (18) 0.0216 (17) 0.0120 (18)
C13 0.0409 (18) 0.068 (2) 0.061 (2) −0.0175 (16) 0.0086 (16) −0.0059 (17)
C14 0.070 (2) 0.0449 (18) 0.0483 (18) 0.0091 (16) 0.0159 (16) −0.0003 (15)
C15 0.0495 (18) 0.0343 (15) 0.0444 (17) 0.0026 (13) 0.0153 (14) −0.0027 (13)
C16 0.063 (2) 0.061 (2) 0.060 (2) 0.0124 (17) 0.0266 (18) −0.0089 (17)
C17 0.053 (2) 0.073 (2) 0.075 (3) 0.0072 (18) 0.0156 (19) −0.009 (2)
C18 0.065 (2) 0.057 (2) 0.063 (2) −0.0105 (18) 0.0105 (18) −0.0089 (18)
C19 0.0488 (18) 0.0533 (19) 0.059 (2) 0.0015 (15) 0.0220 (16) −0.0111 (16)
C20 0.148 (4) 0.068 (2) 0.072 (3) 0.060 (3) 0.040 (3) 0.029 (2)
C21 0.0366 (16) 0.0423 (16) 0.0377 (16) −0.0074 (13) 0.0080 (12) −0.0005 (13)

Geometric parameters (Å, º)

Co1—N6i 2.074 (2) C4—H4 0.9500
Co1—N6 2.074 (2) C5—C6 1.384 (4)
Co1—O3 2.134 (2) C5—H5 0.9500
Co1—O3i 2.134 (2) C6—C7 1.499 (4)
Co1—N4i 2.162 (2) C8—C9 1.513 (4)
Co1—N4 2.162 (2) C8—H8A 0.9900
S1—C21 1.627 (3) C8—H8B 0.9900
O1—C1 1.224 (3) C9—C10 1.371 (4)
O2—C7 1.234 (3) C9—C13 1.373 (4)
O3—C20 1.399 (4) C10—H10 0.9500
O3—H1 0.76 (3) C11—C12 1.369 (4)
N1—C2 1.333 (3) C11—H11 0.9500
N1—C6 1.341 (3) C12—C13 1.369 (4)
N2—C1 1.336 (4) C12—H12 0.9500
N2—C8 1.447 (4) C13—H13 0.9500
N2—H2A 0.8800 C14—C15 1.507 (4)
N3—C7 1.325 (3) C14—H14A 0.9900
N3—C14 1.456 (4) C14—H14B 0.9900
N3—H3A 0.8800 C15—C19 1.372 (4)
N4—C11 1.334 (3) C15—C16 1.377 (4)
N4—C10 1.344 (3) C16—C17 1.366 (5)
N5—C18 1.327 (4) C16—H16 0.9500
N5—C19 1.335 (4) C17—C18 1.372 (5)
N6—C21 1.158 (3) C17—H17 0.9500
C1—C2 1.498 (4) C18—H18 0.9500
C2—C3 1.393 (4) C19—H19 0.9500
C3—C4 1.375 (4) C20—H20A 0.9800
C3—H3 0.9500 C20—H20B 0.9800
C4—C5 1.377 (4) C20—H20C 0.9800
N6i—Co1—N6 180.00 (9) N3—C7—C6 116.4 (2)
N6i—Co1—O3 88.41 (9) N2—C8—C9 114.9 (2)
N6—Co1—O3 91.59 (9) N2—C8—H8A 108.6
N6i—Co1—O3i 91.59 (9) C9—C8—H8A 108.6
N6—Co1—O3i 88.41 (9) N2—C8—H8B 108.6
O3—Co1—O3i 180.0 C9—C8—H8B 108.6
N6i—Co1—N4i 90.80 (9) H8A—C8—H8B 107.5
N6—Co1—N4i 89.20 (9) C10—C9—C13 117.6 (3)
O3—Co1—N4i 89.60 (9) C10—C9—C8 121.8 (3)
O3i—Co1—N4i 90.40 (9) C13—C9—C8 120.4 (3)
N6i—Co1—N4 89.20 (9) N4—C10—C9 123.9 (3)
N6—Co1—N4 90.80 (9) N4—C10—H10 118.1
O3—Co1—N4 90.40 (9) C9—C10—H10 118.1
O3i—Co1—N4 89.60 (9) N4—C11—C12 122.0 (3)
N4i—Co1—N4 180.0 N4—C11—H11 119.0
C20—O3—Co1 129.8 (2) C12—C11—H11 119.0
C20—O3—H1 111 (2) C13—C12—C11 119.9 (3)
Co1—O3—H1 118 (2) C13—C12—H12 120.1
C2—N1—C6 117.7 (2) C11—C12—H12 120.1
C1—N2—C8 123.2 (3) C12—C13—C9 119.2 (3)
C1—N2—H2A 118.4 C12—C13—H13 120.4
C8—N2—H2A 118.4 C9—C13—H13 120.4
C7—N3—C14 121.5 (2) N3—C14—C15 113.6 (2)
C7—N3—H3A 119.2 N3—C14—H14A 108.9
C14—N3—H3A 119.2 C15—C14—H14A 108.9
C11—N4—C10 117.3 (2) N3—C14—H14B 108.9
C11—N4—Co1 123.2 (2) C15—C14—H14B 108.9
C10—N4—Co1 119.40 (18) H14A—C14—H14B 107.7
C18—N5—C19 116.7 (3) C19—C15—C16 117.1 (3)
C21—N6—Co1 154.7 (2) C19—C15—C14 120.2 (3)
O1—C1—N2 123.5 (3) C16—C15—C14 122.7 (3)
O1—C1—C2 121.3 (3) C17—C16—C15 119.4 (3)
N2—C1—C2 115.2 (3) C17—C16—H16 120.3
N1—C2—C3 122.9 (3) C15—C16—H16 120.3
N1—C2—C1 116.7 (3) C16—C17—C18 119.2 (3)
C3—C2—C1 120.5 (3) C16—C17—H17 120.4
C4—C3—C2 118.5 (3) C18—C17—H17 120.4
C4—C3—H3 120.7 N5—C18—C17 122.9 (3)
C2—C3—H3 120.7 N5—C18—H18 118.5
C3—C4—C5 119.3 (3) C17—C18—H18 118.5
C3—C4—H4 120.4 N5—C19—C15 124.6 (3)
C5—C4—H4 120.4 N5—C19—H19 117.7
C4—C5—C6 118.7 (3) C15—C19—H19 117.7
C4—C5—H5 120.7 O3—C20—H20A 109.5
C6—C5—H5 120.7 O3—C20—H20B 109.5
N1—C6—C5 122.9 (3) H20A—C20—H20B 109.5
N1—C6—C7 116.9 (2) O3—C20—H20C 109.5
C5—C6—C7 120.2 (3) H20A—C20—H20C 109.5
O2—C7—N3 122.6 (3) H20B—C20—H20C 109.5
O2—C7—C6 121.0 (3) N6—C21—S1 179.4 (3)
N6i—Co1—O3—C20 167.7 (3) C4—C5—C6—C7 179.8 (3)
N6—Co1—O3—C20 −12.3 (3) C14—N3—C7—O2 −1.4 (4)
N4i—Co1—O3—C20 76.9 (3) C14—N3—C7—C6 178.5 (2)
N4—Co1—O3—C20 −103.1 (3) N1—C6—C7—O2 −173.0 (3)
N6i—Co1—N4—C11 57.5 (2) C5—C6—C7—O2 6.5 (4)
N6—Co1—N4—C11 −122.5 (2) N1—C6—C7—N3 7.2 (4)
O3—Co1—N4—C11 −30.9 (2) C5—C6—C7—N3 −173.4 (3)
O3i—Co1—N4—C11 149.1 (2) C1—N2—C8—C9 94.9 (3)
N6i—Co1—N4—C10 −119.7 (2) N2—C8—C9—C10 −22.9 (4)
N6—Co1—N4—C10 60.3 (2) N2—C8—C9—C13 160.6 (3)
O3—Co1—N4—C10 151.9 (2) C11—N4—C10—C9 −0.5 (4)
O3i—Co1—N4—C10 −28.1 (2) Co1—N4—C10—C9 176.9 (2)
O3—Co1—N6—C21 12.0 (5) C13—C9—C10—N4 1.7 (4)
O3i—Co1—N6—C21 −168.0 (5) C8—C9—C10—N4 −174.9 (3)
N4i—Co1—N6—C21 −77.6 (5) C10—N4—C11—C12 −1.2 (4)
N4—Co1—N6—C21 102.4 (5) Co1—N4—C11—C12 −178.4 (2)
C8—N2—C1—O1 −2.3 (4) N4—C11—C12—C13 1.5 (5)
C8—N2—C1—C2 177.9 (2) C11—C12—C13—C9 −0.2 (5)
C6—N1—C2—C3 1.8 (4) C10—C9—C13—C12 −1.4 (5)
C6—N1—C2—C1 −176.7 (2) C8—C9—C13—C12 175.3 (3)
O1—C1—C2—N1 173.9 (3) C7—N3—C14—C15 74.6 (4)
N2—C1—C2—N1 −6.3 (4) N3—C14—C15—C19 −133.0 (3)
O1—C1—C2—C3 −4.7 (4) N3—C14—C15—C16 49.6 (4)
N2—C1—C2—C3 175.0 (3) C19—C15—C16—C17 0.5 (5)
N1—C2—C3—C4 −2.2 (4) C14—C15—C16—C17 178.0 (3)
C1—C2—C3—C4 176.3 (3) C15—C16—C17—C18 0.0 (5)
C2—C3—C4—C5 1.0 (5) C19—N5—C18—C17 0.2 (5)
C3—C4—C5—C6 0.4 (5) C16—C17—C18—N5 −0.3 (5)
C2—N1—C6—C5 −0.3 (4) C18—N5—C19—C15 0.3 (5)
C2—N1—C6—C7 179.1 (2) C16—C15—C19—N5 −0.6 (5)
C4—C5—C6—N1 −0.8 (4) C14—C15—C19—N5 −178.2 (3)

Symmetry code: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N5ii 0.88 2.18 2.980 (3) 151
O3—H1···O2iii 0.76 (3) 1.94 (3) 2.679 (3) 163 (3)

Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2057).

References

  1. Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2006). Cryst. Growth Des. 6, 974–982.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  5. Thompson, L. K. (2002). Coord. Chem. Rev. 233, 193–206.
  6. Uemura, K., Kitagawa, S., Kondo, M., Fukui, K., Kitaura, R., Chang, H. C. & Mizutani, T. (2002). Chem. Eur. J. 8, 3586–3600. [DOI] [PubMed]
  7. Wu, B., Liu, C., Yuan, D., Jiang, F. & Hong, M. (2008). Cryst. Growth Des. 8, 3791–3802.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020326/yk2057sup1.cif

e-68-0m765-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020326/yk2057Isup2.hkl

e-68-0m765-Isup2.hkl (186.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES