Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):m768–m769. doi: 10.1107/S1600536812020740

Poly[[(methanol)(μ4-2,4,5,6-tetra­fluoro­benzene-1,3-dicarboxyl­ato)copper(II)] methanol monosolvate]

Dan Yan a, Qian Duan a,*
PMCID: PMC3379103  PMID: 22719324

Abstract

In the title compound, {[Cu(C8F4O4)(CH3OH)]·CH3OH}n, two CuII atoms are bridged by four carboxyl­ate groups, forming the well known paddle-wheel secondary building unit (SBU) with axial methanol ligands. In each ligand, the dihedral angles between the benzene ring and the two carboxyl­ate groups are 80.43 (17) and 62.5 (4)°. Within each SBU, the four carboxyl­ate groups come from four symmetry-equivalent tetra­fluoro­isophthalate ligands. Each tetra­fluoro­isophthalate group connects two SBUs, forming a layered structure . In the crystal, O—H⋯O hydrogen bonds involving the free and ligated methanol mol­ecules link the mol­ecules into a three-dimensional supra­molecular network.

Related literature  

For background to coordination polymers, see: Kim et al. (2001); Kitagawa et al. (2004). For applications of coordination polymers, see: Wang et al. (2009); Dincă & Long (2008); Furukawa et al. (2008). For information on fluorinated coordination polymers, see: Yang et al. (2007); Hulvey et al. (2009).graphic file with name e-68-0m768-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C8F4O4)(CH4O)]·CH4O

  • M r = 363.70

  • Monoclinic, Inline graphic

  • a = 8.6542 (7) Å

  • b = 12.1882 (10) Å

  • c = 12.4272 (10) Å

  • β = 98.390 (1)°

  • V = 1296.78 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 200 K

  • 0.34 × 0.22 × 0.19 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.621, T max = 0.715

  • 8122 measured reflections

  • 2575 independent reflections

  • 2365 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.092

  • S = 1.07

  • 2575 reflections

  • 196 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020740/pk2400sup1.cif

e-68-0m768-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020740/pk2400Isup2.hkl

e-68-0m768-Isup2.hkl (126.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O2i 1.9600 (18)
Cu1—O1 1.9650 (18)
Cu1—O3ii 1.9656 (18)
Cu1—O4iii 1.9734 (17)
Cu1—O5 2.0834 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O6iv 0.84 (1) 1.80 (1) 2.637 (3) 173 (4)
O6—H6⋯O4v 0.82 2.02 2.828 (3) 169

Symmetry codes: (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

Comment

The design and synthesis of coordination polymers is an active area of research as these compounds have potential uses in gas storage, catalysis, magnetism and so on. The Omary and Cheetham groups have both reported interesting hydrogen adsorption properties in porous coordination polymers containing fluorinated ligands (Yang et al. 2007; Hulvey et al. 2009). Indeed, most of the reports to date of coordination polymers containing perfluorinated dicarboxylates involve a second ligand, which is typically a simple, nonfluorinated, nitrogen-containing molecule. The well known paddlewheel secondary building unit (M2(O2CR)4L2, M=Cu, Zn, etc.; L=terminal ligand) has been used extensively in generating porous coordination polymers. Here, we report a perfluorinated coordination polymer (I), {[Cu(C8F4O4)(CH3OH)].CH3OH}n, which is constructed using the paddlewheel SBU Cu2(O2CR)4L2 (L=CH3OH).

The asymmetric unit is composed of one CuII center, one tetrafluoroisophthalate anion, one coordinated methanol ligand, and one methanol solvent molecule (Fig. 1). Each CuII ion is five-coordinated by four oxygen donors from four different tetrafluoroisophthalate ligands and one oxygen atom from a terminal methanol molecule. In the paddlewheel SBU, the two copper ions are separated by 2.6622 (6) Å. Each SBU connects four tetrafluoroisophthalate ligands, and each tetrafluoroisophthalate group connect two SBUs to form a two dimensional layered structure (Fig. 2). Adjacent parallel layers are connected by O—H···O hydrogen bonds between guest methanol molecules and the coordinated methanol molecules to create a three-dimensional supramolecular network.

Experimental

Compound I was obtained by layering 5 ml of a methanol solution containing 2,4,5,6-tetrafluoro-1,3-benzenedicarboxylic acid (23 mg, 0.10 mmol) and 2,6-lutidine (0.034 ml, 0.30 mmol) onto 5 ml of a methanol/nitrobenzene solution (1.5:1, v/v) containing Cu(NO3)2.2.5H2O (23 mg, 0.10 mmol). Green crystals formed at the interlayer boundary within one week. After two weeks, blue block-shaped crystals of the title compound suitable for X-ray diffraction were obtained by slow diffusion of the solvents in 26% yield (9.5 mg, based on the ligand).

Refinement

All H atoms bound to C atoms and O—H hydrogen atoms of the free methanol molecules were assigned to calculated positions with C—H = 0.96 Å, O—H = 0.82 Å, and refined using a riding model, with Uiso(H)=1.5 Ueq(C,O). O—H hydrogen atoms of the coordinated methanol molecules were found in difference Fourier maps and refined isotropically with the distance restraint: O—H = 0.85 Å and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

An ellipsoid plot (30% probability level) of the paddlewheel SBU showing the labelled asymmetric unit. Hydrogen atoms are drawn as small arbitrary spheres.

Fig. 2.

Fig. 2.

A view of the two-dimensional packing of the title compound, the hydrogen bonding interactions are shown as broken lines.

Crystal data

[Cu(C8F4O4)(CH4O)]·CH4O F(000) = 724
Mr = 363.70 Dx = 1.863 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2575 reflections
a = 8.6542 (7) Å θ = 2.4–26.1°
b = 12.1882 (10) Å µ = 1.76 mm1
c = 12.4272 (10) Å T = 200 K
β = 98.390 (1)° Block, green
V = 1296.78 (18) Å3 0.34 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2575 independent reflections
Radiation source: fine-focus sealed tube 2365 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
Detector resolution: 9.00 pixels mm-1 θmax = 26.1°, θmin = 2.4°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) k = −15→14
Tmin = 0.621, Tmax = 0.715 l = −13→15
8122 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0551P)2 + 1.2274P] where P = (Fo2 + 2Fc2)/3
2575 reflections (Δ/σ)max = 0.001
196 parameters Δρmax = 1.05 e Å3
1 restraint Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.86874 (3) 0.96498 (2) 0.53265 (2) 0.01964 (12)
C1 0.8110 (3) 1.2979 (2) 0.4412 (2) 0.0263 (5)
C2 0.7454 (3) 1.32560 (19) 0.33704 (19) 0.0244 (5)
C3 0.6682 (3) 1.4235 (2) 0.30967 (19) 0.0253 (5)
C4 0.6579 (4) 1.4958 (2) 0.3942 (2) 0.0364 (7)
C5 0.7222 (5) 1.4715 (2) 0.4996 (2) 0.0471 (9)
C6 0.7980 (4) 1.3732 (2) 0.5220 (2) 0.0412 (7)
C7 0.8867 (3) 1.18712 (19) 0.46554 (18) 0.0237 (5)
C8 0.6012 (3) 1.45109 (18) 0.1942 (2) 0.0239 (5)
C9 0.6040 (4) 0.8097 (3) 0.5897 (3) 0.0528 (9)
H9A 0.5000 0.8111 0.6079 0.079*
H9B 0.6736 0.7776 0.6485 0.079*
H9C 0.6053 0.7668 0.5250 0.079*
C10 0.0958 (4) 0.3426 (3) 0.2112 (3) 0.0545 (9)
H10A 0.2061 0.3549 0.2157 0.082*
H10B 0.0624 0.2914 0.1538 0.082*
H10C 0.0735 0.3132 0.2790 0.082*
F1 0.7529 (2) 1.25055 (12) 0.25928 (11) 0.0331 (4)
F2 0.5866 (3) 1.59239 (14) 0.37550 (13) 0.0523 (5)
F3 0.7098 (4) 1.54384 (16) 0.57961 (16) 0.0796 (9)
F4 0.8600 (3) 1.35034 (16) 0.62475 (14) 0.0636 (6)
O1 0.8026 (2) 1.11737 (14) 0.50171 (15) 0.0307 (4)
O2 1.0228 (2) 1.17630 (14) 0.44677 (15) 0.0313 (4)
O3 0.4671 (2) 1.48965 (17) 0.17844 (14) 0.0319 (4)
O4 0.6883 (2) 1.43243 (16) 0.12365 (13) 0.0285 (4)
O5 0.6524 (2) 0.91720 (17) 0.57154 (19) 0.0400 (5)
H5 0.601 (4) 0.960 (2) 0.606 (3) 0.057 (12)*
O6 0.0148 (3) 0.4435 (2) 0.1894 (2) 0.0569 (7)
H6 −0.0781 0.4313 0.1697 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.02543 (18) 0.01590 (18) 0.01669 (18) −0.00318 (10) 0.00001 (11) 0.00040 (10)
C1 0.0362 (13) 0.0189 (11) 0.0219 (12) 0.0017 (10) −0.0022 (10) 0.0017 (9)
C2 0.0350 (13) 0.0201 (11) 0.0173 (11) 0.0010 (10) 0.0014 (9) −0.0004 (9)
C3 0.0351 (13) 0.0206 (11) 0.0183 (11) 0.0019 (10) −0.0023 (9) 0.0010 (9)
C4 0.0620 (19) 0.0204 (13) 0.0239 (13) 0.0141 (13) −0.0028 (12) 0.0015 (10)
C5 0.088 (3) 0.0274 (15) 0.0208 (14) 0.0171 (14) −0.0073 (15) −0.0089 (10)
C6 0.073 (2) 0.0284 (14) 0.0171 (12) 0.0104 (14) −0.0107 (12) 0.0024 (11)
C7 0.0353 (13) 0.0181 (11) 0.0155 (11) 0.0014 (9) −0.0037 (9) 0.0005 (9)
C8 0.0335 (13) 0.0162 (11) 0.0200 (12) 0.0003 (9) −0.0022 (10) −0.0006 (9)
C9 0.0485 (19) 0.0407 (18) 0.070 (2) −0.0086 (14) 0.0117 (17) 0.0131 (16)
C10 0.0519 (19) 0.061 (2) 0.049 (2) −0.0095 (17) 0.0024 (15) 0.0140 (17)
F1 0.0550 (10) 0.0226 (7) 0.0197 (7) 0.0083 (6) −0.0017 (6) −0.0035 (6)
F2 0.0966 (15) 0.0268 (8) 0.0287 (9) 0.0282 (9) −0.0068 (9) −0.0013 (7)
F3 0.166 (3) 0.0405 (12) 0.0247 (10) 0.0440 (13) −0.0131 (12) −0.0126 (8)
F4 0.1242 (19) 0.0373 (10) 0.0196 (8) 0.0251 (11) −0.0217 (9) −0.0025 (7)
O1 0.0374 (10) 0.0191 (8) 0.0356 (10) 0.0020 (7) 0.0055 (8) 0.0043 (7)
O2 0.0369 (10) 0.0207 (8) 0.0359 (10) 0.0013 (7) 0.0046 (8) 0.0085 (7)
O3 0.0376 (10) 0.0376 (10) 0.0192 (9) 0.0111 (8) 0.0001 (7) 0.0032 (8)
O4 0.0319 (9) 0.0330 (9) 0.0190 (8) 0.0050 (8) −0.0016 (7) 0.0054 (7)
O5 0.0375 (11) 0.0297 (10) 0.0566 (13) −0.0091 (8) 0.0192 (10) −0.0092 (9)
O6 0.0374 (12) 0.0643 (15) 0.0666 (17) −0.0080 (11) −0.0002 (11) 0.0208 (13)

Geometric parameters (Å, º)

Cu1—O2i 1.9600 (18) C7—O2 1.241 (3)
Cu1—O1 1.9650 (18) C7—O1 1.245 (3)
Cu1—O3ii 1.9656 (18) C8—O3 1.240 (3)
Cu1—O4iii 1.9734 (17) C8—O4 1.258 (3)
Cu1—O5 2.0834 (19) C9—O5 1.404 (4)
Cu1—Cu1i 2.6622 (6) C9—H9A 0.9600
C1—C6 1.377 (4) C9—H9B 0.9600
C1—C2 1.378 (3) C9—H9C 0.9600
C1—C7 1.512 (3) C10—O6 1.422 (5)
C2—F1 1.339 (3) C10—H10A 0.9600
C2—C3 1.385 (3) C10—H10B 0.9600
C3—C4 1.384 (4) C10—H10C 0.9600
C3—C8 1.505 (3) O2—Cu1i 1.9600 (18)
C4—F2 1.334 (3) O3—Cu1iv 1.9656 (18)
C4—C5 1.379 (4) O4—Cu1v 1.9733 (17)
C5—F3 1.344 (3) O5—H5 0.842 (10)
C5—C6 1.375 (4) O6—H6 0.8200
C6—F4 1.340 (3)
O2i—Cu1—O1 167.50 (8) F4—C6—C5 119.1 (3)
O2i—Cu1—O3ii 89.55 (8) F4—C6—C1 119.5 (2)
O1—Cu1—O3ii 89.38 (8) C5—C6—C1 121.4 (2)
O2i—Cu1—O4iii 89.89 (8) O2—C7—O1 128.0 (2)
O1—Cu1—O4iii 88.48 (8) O2—C7—C1 116.9 (2)
O3ii—Cu1—O4iii 167.51 (8) O1—C7—C1 115.0 (2)
O2i—Cu1—O5 98.84 (8) O3—C8—O4 126.9 (2)
O1—Cu1—O5 93.64 (8) O3—C8—C3 117.2 (2)
O3ii—Cu1—O5 98.51 (8) O4—C8—C3 115.9 (2)
O4iii—Cu1—O5 93.91 (8) O5—C9—H9A 109.5
O2i—Cu1—Cu1i 84.70 (5) O5—C9—H9B 109.5
O1—Cu1—Cu1i 82.79 (6) H9A—C9—H9B 109.5
O3ii—Cu1—Cu1i 85.21 (6) O5—C9—H9C 109.5
O4iii—Cu1—Cu1i 82.31 (5) H9A—C9—H9C 109.5
O5—Cu1—Cu1i 174.85 (7) H9B—C9—H9C 109.5
C6—C1—C2 117.1 (2) O6—C10—H10A 109.5
C6—C1—C7 121.9 (2) O6—C10—H10B 109.5
C2—C1—C7 120.9 (2) H10A—C10—H10B 109.5
F1—C2—C1 117.0 (2) O6—C10—H10C 109.5
F1—C2—C3 118.9 (2) H10A—C10—H10C 109.5
C1—C2—C3 124.0 (2) H10B—C10—H10C 109.5
C4—C3—C2 116.4 (2) C7—O1—Cu1 123.16 (17)
C4—C3—C8 121.5 (2) C7—O2—Cu1i 121.24 (15)
C2—C3—C8 122.1 (2) C8—O3—Cu1iv 121.44 (17)
F2—C4—C5 117.8 (2) C8—O4—Cu1v 124.10 (16)
F2—C4—C3 120.6 (2) C9—O5—Cu1 126.70 (19)
C5—C4—C3 121.5 (2) C9—O5—H5 108 (3)
F3—C5—C6 120.6 (3) Cu1—O5—H5 120 (3)
F3—C5—C4 119.8 (3) C10—O6—H6 109.5
C6—C5—C4 119.6 (3)

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1/2, −y+5/2, z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x−1/2, −y+5/2, z−1/2; (v) −x+3/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5···O6vi 0.84 (1) 1.80 (1) 2.637 (3) 173 (4)
O6—H6···O4vii 0.82 2.02 2.828 (3) 169

Symmetry codes: (vi) x+1/2, −y+3/2, z+1/2; (vii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2400).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dincă, M. & Long, J. R. (2008). Angew. Chem. Int. Ed. 47, 6766–6779. [DOI] [PubMed]
  3. Furukawa, H., Kim, J., Ockwig, N. W., O’Keeffe, M. & Yaghi, O. M. (2008). J. Am. Chem. Soc. 130, 11650–11651. [DOI] [PubMed]
  4. Hulvey, Z., Falcao, E. H. L., Eckert, J. & Cheetham, A. K. (2009). J. Mater. Chem. 19, 4307–4309.
  5. Kim, J., Chen, B., Reineke, T. M., Li, H. L., Eddaoudi, M., Moler, D. B., O’Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 8239–8247. [DOI] [PubMed]
  6. Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [DOI] [PubMed]
  7. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, Z., Chen, G. & Ding, K. (2009). Chem. Rev. 109, 322–359. [DOI] [PubMed]
  10. Yang, C., Wang, X. & Omary, M. A. (2007). J. Am. Chem. Soc. 129, 15454–15455. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812020740/pk2400sup1.cif

e-68-0m768-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020740/pk2400Isup2.hkl

e-68-0m768-Isup2.hkl (126.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES