Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 16;68(Pt 6):m773–m774. doi: 10.1107/S1600536812021010

[4,6-Dimethyl­pyrimidine-2(1H)-thione-κS]iodidobis(triphenyl­phosphane-κP)copper(I)

Chaveng Pakawatchai a,*, Yupa Wattanakanjana b, Patcharanan Choto a, Ruthairat Nimthong a
PMCID: PMC3379106  PMID: 22719327

Abstract

In the mononuclear title complex, [CuI(C6H8N2S)(C18H15P)2], the CuI ion is in a slightly distorted tetra­hedral coordination geometry formed by two P atoms from two triphenyl­phosphane ligands, one S atom from a 4,6-dimethyl­pyrimidine-2(1H)-thione ligand and one iodide ion. There is an intra­molecular N—H⋯I hydrogen bond. In the crystal, π–π stacking inter­actions [centroid–centroid distance = 3.594 (1) Å] are observed.

Related literature  

For the coordination and potential applications of CuI complexes, see: Santra et al. (1999); Fujisawa et al. (2004); Tian et al. (2004); Kang (2006); Reymond & Cossy (2008); Gong et al. (2010). For relevant examples of discrete complexes, see: Voutsas et al. (1995); Lemos et al. (2001); Lobana et al. (2008); Nimthong et al. (2008).graphic file with name e-68-0m773-scheme1.jpg

Experimental  

Crystal data  

  • [CuI(C6H8N2S)(C18H15P)2]

  • M r = 855.18

  • Triclinic, Inline graphic

  • a = 11.5605 (7) Å

  • b = 13.0076 (8) Å

  • c = 13.6456 (8) Å

  • α = 92.243 (1)°

  • β = 99.247 (1)°

  • γ = 106.092 (1)°

  • V = 1938.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.32 × 0.16 × 0.08 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.744, T max = 0.882

  • 26730 measured reflections

  • 9368 independent reflections

  • 8066 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.075

  • S = 1.03

  • 9368 reflections

  • 448 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021010/lh5472sup1.cif

e-68-0m773-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021010/lh5472Isup2.hkl

e-68-0m773-Isup2.hkl (448.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯I1 0.87 (3) 2.62 (3) 3.4858 (18) 176 (3)

Acknowledgments

We gratefully acknowledge financial support from the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University.

supplementary crystallographic information

Comment

The synthesis and coordination chemistry of copper(I) complexes have been widely studied. Some of these complexes have been found to have unusual structural features, exhibit corrosion-inhibiting properties (Tian et al., 2004), catalytic activity in photo-redox reactions (Santra et al., 1999), phosphorescence due to close Cu···Cu interactions (Gong, et al., 2010), precursors to blue copper–protein model (Fujisawa et al., 2004) and catalysts in enantiomer selective Diels–Alder reactions (Reymond & Cossy, 2008). Moreover, the role of copper(I) is evident in several biologically important reactions, such as a dioxygen carrier and models for several enzymes (Kang, 2006).

The molecular structure of the title compound is shown in Fig. 1. The complex is monomeric with a slightly distorted tetrahedral coordination enviroment around Cu1. The Cu1—S bond length of 2.3404 (6) Å, is in good agreement with values reported for other copper(I) complexes with heterocyclic thione ligands, such as 2.3723 (12) Å for [Cu(N3)(dmpymtH)(PPh3)2] (Lemos et al., 2001) and 2.344 (3) Å for [CuI(1κs-imzsH)(PPh3)2] (Lobana et al., 2008). The Cu1—P1 and Cu1—P2 bond distances, 2.2897 (5) and 2.3047 (5) Å, are as expected. The bond distance of Cu1—I1, 2.6801 (3), is comparable to those found [2.6658 (8) Å] for [Cu2(C7H8N2S)(C18 H13P)2I] (Nimthong et al., 2008) and 2.674 (2) Å for [Cu(PPh3)2(pymtH)I] (Voutsas et al., 1995). In the crystal, π(pyrimidine)···π(pyrimidine) (centroid-centroid distances = 3.594 Å) interactions are observed. In addition, an intramolecular hydrogen bond is also observed (see Table 1 and Fig. 2).

Experimental

A solution of 4,6-dimethylpyrimidine-2(1H)-thione, (0.08 g, 0.52 mmol) in 30 cm3 of methanol was stirred at 333 K then CuI (0.10 g, 0.52 mmol) solid was added and stirred for 3 h. Solid of triphenylphosphane (0.27 g, 1.04 mmol) was added and heated with continuous stirring for a period of 2 h. The clear yellow solution was formed then filtered off and kept at room temperature. Slow evaporation of the solvent gave the yellow colored crystalline solids, which were filtered off and dried in vacuo. Analysis found: C 60.11, H 4.46, N 2.88, S 3.22%; calculated for C42H37CuIN2P2S: C 59.03, H 4.37, N 3.28, S 3.76%.

Refinement

The H atoms bonded to C atoms were constrained with a riding model of 0.93–0.96 Å, and Uiso(H) = 1.2Ueq(C). The H atom bonded to the N atom was located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure with the intramolecular hydrogen bond and π–π stacking interactions shown asphosphine dashed lines.

Crystal data

[CuI(C6H8N2S)(C18H15P)2] Z = 2
Mr = 855.18 F(000) = 864
Triclinic, P1 Dx = 1.465 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.5605 (7) Å Cell parameters from 9368 reflections
b = 13.0076 (8) Å θ = 1.5–28.1°
c = 13.6456 (8) Å µ = 1.53 mm1
α = 92.243 (1)° T = 293 K
β = 99.247 (1)° Block, yellow
γ = 106.092 (1)° 0.32 × 0.16 × 0.08 mm
V = 1938.3 (2) Å3

Data collection

Bruker SMART CCD diffractometer 9368 independent reflections
Radiation source: fine-focus sealed tube 8066 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 28.1°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −15→15
Tmin = 0.744, Tmax = 0.882 k = −17→17
26730 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.040P)2 + 0.4017P] where P = (Fo2 + 2Fc2)/3
9368 reflections (Δ/σ)max = 0.009
448 parameters Δρmax = 0.90 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C28 0.1739 (3) 0.7348 (2) 0.7628 (3) 0.0828 (9)
H28 0.1874 0.8068 0.7511 0.099*
N1 0.30622 (16) 0.47879 (16) 0.54816 (13) 0.0497 (4)
N2 0.50121 (16) 0.58089 (15) 0.62532 (14) 0.0522 (4)
I1 0.059857 (12) 0.249292 (11) 0.536351 (9) 0.05129 (5)
Cu1 0.20767 (2) 0.292271 (17) 0.714703 (16) 0.03664 (6)
P1 0.23312 (4) 0.13349 (4) 0.76683 (3) 0.03493 (10)
P2 0.11163 (4) 0.37674 (4) 0.81382 (3) 0.03521 (10)
S 0.40255 (5) 0.40670 (5) 0.71098 (4) 0.05366 (14)
C25 0.13677 (17) 0.52001 (15) 0.79783 (16) 0.0419 (4)
C36 0.2937 (2) 0.4210 (2) 0.97987 (18) 0.0589 (6)
H36 0.3434 0.4507 0.9349 0.071*
C31 0.16908 (18) 0.37741 (15) 0.94672 (14) 0.0413 (4)
C7 0.08651 (17) 0.04295 (14) 0.78284 (14) 0.0390 (4)
C13 0.33044 (18) 0.13894 (16) 0.88752 (14) 0.0413 (4)
C20 −0.12265 (19) 0.38591 (17) 0.84239 (16) 0.0479 (5)
H20 −0.0832 0.4533 0.8758 0.057*
C19 −0.05481 (16) 0.32710 (14) 0.80249 (13) 0.0361 (4)
C1A 0.40371 (17) 0.49478 (16) 0.62299 (15) 0.0436 (4)
C15 0.3912 (3) 0.0614 (3) 1.03790 (19) 0.0688 (7)
H15 0.3791 0.0047 1.0782 0.083*
C1 0.29216 (18) 0.05372 (14) 0.68461 (15) 0.0413 (4)
C24 −0.11585 (18) 0.22715 (16) 0.75210 (15) 0.0457 (4)
H24 −0.0721 0.1869 0.7244 0.055*
C12 0.0372 (2) 0.06523 (18) 0.86484 (17) 0.0519 (5)
H12 0.0823 0.1209 0.9125 0.062*
C23 −0.2420 (2) 0.18691 (19) 0.74285 (18) 0.0582 (6)
H23 −0.2822 0.1197 0.7093 0.070*
C30 0.1607 (2) 0.59860 (18) 0.8761 (2) 0.0595 (6)
H30 0.1647 0.5793 0.9412 0.071*
C4A 0.4968 (2) 0.64843 (17) 0.55446 (18) 0.0528 (5)
C3A 0.3966 (2) 0.63329 (19) 0.47959 (19) 0.0590 (6)
H3A 0.3960 0.6827 0.4322 0.071*
C21 −0.2480 (2) 0.3452 (2) 0.83287 (19) 0.0588 (6)
H21 −0.2924 0.3850 0.8603 0.071*
C26 0.1312 (2) 0.5507 (2) 0.70146 (18) 0.0577 (5)
H26 0.1153 0.4991 0.6481 0.069*
C6 0.3865 (2) 0.0101 (2) 0.7182 (2) 0.0607 (6)
H6 0.4233 0.0216 0.7850 0.073*
C14 0.3145 (2) 0.0530 (2) 0.94765 (17) 0.0549 (5)
H14 0.2518 −0.0100 0.9266 0.066*
C11 −0.0780 (2) 0.0054 (2) 0.8761 (2) 0.0636 (6)
H11 −0.1099 0.0205 0.9316 0.076*
C8 0.0176 (2) −0.03985 (19) 0.71278 (18) 0.0577 (6)
H8 0.0489 −0.0563 0.6575 0.069*
C18 0.4263 (2) 0.23035 (18) 0.91961 (17) 0.0545 (5)
H18 0.4394 0.2878 0.8803 0.065*
C32 0.0970 (2) 0.33340 (18) 1.01459 (16) 0.0523 (5)
H32 0.0132 0.3033 0.9940 0.063*
C22 −0.3075 (2) 0.2458 (2) 0.78291 (19) 0.0608 (6)
H22 −0.3920 0.2186 0.7764 0.073*
C10 −0.1458 (2) −0.0765 (2) 0.8056 (2) 0.0730 (7)
H10 −0.2236 −0.1167 0.8130 0.088*
C35 0.3454 (3) 0.4211 (3) 1.0784 (2) 0.0741 (8)
H35 0.4292 0.4510 1.0994 0.089*
C2 0.2401 (2) 0.03643 (19) 0.58387 (17) 0.0567 (5)
H2 0.1786 0.0671 0.5598 0.068*
C2A 0.2996 (2) 0.5461 (2) 0.47577 (18) 0.0589 (6)
C17 0.5035 (3) 0.2368 (2) 1.0107 (2) 0.0738 (8)
H17 0.5676 0.2988 1.0318 0.089*
C16 0.4861 (3) 0.1539 (3) 1.0685 (2) 0.0743 (8)
H16 0.5382 0.1592 1.1292 0.089*
C6A 0.6067 (3) 0.7428 (2) 0.5611 (3) 0.0796 (8)
H6A1 0.6128 0.7903 0.6185 0.119*
H6A2 0.5994 0.7801 0.5021 0.119*
H6A3 0.6787 0.7187 0.5668 0.119*
C33 0.1498 (3) 0.3341 (2) 1.11417 (18) 0.0693 (7)
H33 0.1009 0.3051 1.1599 0.083*
C34 0.2736 (3) 0.3774 (2) 1.1448 (2) 0.0761 (8)
H34 0.3085 0.3770 1.2111 0.091*
C5A 0.1858 (3) 0.5182 (3) 0.3989 (2) 0.1030 (13)
H5A1 0.1244 0.5432 0.4238 0.155*
H5A2 0.1567 0.4417 0.3840 0.155*
H5A3 0.2032 0.5519 0.3395 0.155*
C5 0.4258 (3) −0.0509 (3) 0.6519 (3) 0.0819 (9)
H5 0.4898 −0.0793 0.6744 0.098*
C3 0.2792 (3) −0.0261 (2) 0.5190 (2) 0.0716 (7)
H3 0.2428 −0.0384 0.4520 0.086*
C4 0.3712 (3) −0.0695 (2) 0.5536 (2) 0.0793 (9)
H4 0.3969 −0.1119 0.5101 0.095*
C29 0.1787 (3) 0.7050 (2) 0.8583 (3) 0.0758 (8)
H29 0.1942 0.7569 0.9114 0.091*
C9 −0.0984 (2) −0.0983 (2) 0.7250 (2) 0.0791 (8)
H9 −0.1446 −0.1534 0.6772 0.095*
C27 0.1490 (3) 0.6578 (2) 0.6843 (2) 0.0777 (8)
H27 0.1442 0.6777 0.6194 0.093*
H1N 0.247 (3) 0.420 (2) 0.547 (2) 0.078 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C28 0.0644 (16) 0.0417 (13) 0.141 (3) 0.0128 (12) 0.0139 (18) 0.0234 (17)
N1 0.0387 (9) 0.0553 (11) 0.0455 (9) 0.0002 (8) 0.0018 (7) 0.0137 (8)
N2 0.0393 (9) 0.0523 (10) 0.0570 (11) 0.0014 (8) 0.0059 (8) 0.0074 (8)
I1 0.04691 (8) 0.05672 (9) 0.03803 (8) 0.00194 (6) −0.00378 (5) −0.00007 (6)
Cu1 0.03788 (12) 0.03647 (12) 0.03407 (11) 0.00853 (9) 0.00599 (9) 0.00272 (9)
P1 0.0365 (2) 0.0340 (2) 0.0347 (2) 0.00952 (18) 0.00871 (18) 0.00224 (18)
P2 0.0338 (2) 0.0356 (2) 0.0343 (2) 0.00938 (18) 0.00254 (18) −0.00113 (18)
S 0.0366 (2) 0.0665 (3) 0.0475 (3) 0.0004 (2) −0.0008 (2) 0.0205 (2)
C25 0.0321 (9) 0.0378 (9) 0.0543 (11) 0.0091 (7) 0.0050 (8) 0.0045 (8)
C36 0.0478 (12) 0.0735 (15) 0.0511 (13) 0.0197 (11) −0.0040 (10) −0.0108 (11)
C31 0.0464 (10) 0.0423 (10) 0.0352 (9) 0.0187 (8) −0.0011 (8) −0.0062 (7)
C7 0.0376 (9) 0.0364 (9) 0.0447 (10) 0.0111 (7) 0.0105 (8) 0.0078 (8)
C13 0.0419 (10) 0.0473 (10) 0.0392 (10) 0.0198 (8) 0.0076 (8) 0.0049 (8)
C20 0.0456 (11) 0.0457 (11) 0.0520 (12) 0.0134 (9) 0.0090 (9) −0.0031 (9)
C19 0.0342 (9) 0.0399 (9) 0.0339 (9) 0.0105 (7) 0.0051 (7) 0.0033 (7)
C1A 0.0340 (9) 0.0501 (11) 0.0424 (10) 0.0052 (8) 0.0064 (8) 0.0063 (8)
C15 0.0698 (16) 0.093 (2) 0.0561 (14) 0.0397 (15) 0.0136 (12) 0.0321 (14)
C1 0.0449 (10) 0.0329 (9) 0.0487 (11) 0.0086 (8) 0.0206 (9) 0.0018 (8)
C24 0.0410 (10) 0.0466 (11) 0.0474 (11) 0.0099 (8) 0.0085 (8) −0.0046 (8)
C12 0.0540 (12) 0.0546 (12) 0.0484 (12) 0.0127 (10) 0.0188 (10) 0.0042 (9)
C23 0.0449 (11) 0.0560 (13) 0.0625 (14) −0.0012 (10) 0.0088 (10) −0.0096 (11)
C30 0.0603 (14) 0.0433 (11) 0.0696 (15) 0.0089 (10) 0.0095 (12) −0.0041 (10)
C4A 0.0460 (11) 0.0459 (11) 0.0656 (14) 0.0075 (9) 0.0174 (10) 0.0075 (10)
C3A 0.0579 (13) 0.0559 (13) 0.0653 (15) 0.0139 (11) 0.0169 (11) 0.0248 (11)
C21 0.0489 (12) 0.0665 (14) 0.0676 (15) 0.0228 (11) 0.0197 (11) −0.0006 (12)
C26 0.0566 (13) 0.0569 (13) 0.0584 (13) 0.0179 (11) 0.0021 (11) 0.0128 (11)
C6 0.0605 (14) 0.0649 (15) 0.0646 (15) 0.0274 (12) 0.0188 (12) 0.0008 (12)
C14 0.0509 (12) 0.0621 (13) 0.0546 (13) 0.0191 (11) 0.0096 (10) 0.0175 (10)
C11 0.0568 (14) 0.0752 (16) 0.0663 (15) 0.0175 (12) 0.0318 (12) 0.0194 (13)
C8 0.0476 (12) 0.0582 (13) 0.0604 (14) 0.0034 (10) 0.0135 (10) −0.0086 (11)
C18 0.0553 (13) 0.0501 (12) 0.0539 (13) 0.0164 (10) −0.0042 (10) 0.0009 (10)
C32 0.0597 (13) 0.0524 (12) 0.0429 (11) 0.0169 (10) 0.0025 (9) 0.0044 (9)
C22 0.0376 (11) 0.0735 (16) 0.0674 (15) 0.0082 (10) 0.0136 (10) 0.0014 (12)
C10 0.0452 (13) 0.0726 (17) 0.097 (2) 0.0019 (12) 0.0246 (14) 0.0171 (15)
C35 0.0616 (15) 0.096 (2) 0.0607 (16) 0.0371 (15) −0.0184 (13) −0.0229 (14)
C2 0.0665 (14) 0.0596 (13) 0.0490 (12) 0.0225 (11) 0.0183 (11) −0.0018 (10)
C2A 0.0535 (13) 0.0669 (15) 0.0515 (13) 0.0109 (11) 0.0041 (10) 0.0193 (11)
C17 0.0651 (16) 0.0727 (17) 0.0712 (17) 0.0201 (13) −0.0208 (13) −0.0064 (14)
C16 0.0705 (17) 0.103 (2) 0.0530 (14) 0.0422 (17) −0.0090 (12) 0.0069 (14)
C6A 0.0615 (16) 0.0562 (15) 0.110 (2) −0.0056 (12) 0.0211 (16) 0.0166 (15)
C33 0.095 (2) 0.0756 (17) 0.0410 (12) 0.0339 (15) 0.0062 (12) 0.0104 (11)
C34 0.099 (2) 0.089 (2) 0.0442 (13) 0.0519 (18) −0.0173 (14) −0.0088 (13)
C5A 0.0741 (19) 0.124 (3) 0.082 (2) −0.0040 (19) −0.0207 (16) 0.055 (2)
C5 0.083 (2) 0.085 (2) 0.099 (2) 0.0493 (17) 0.0372 (18) 0.0027 (17)
C3 0.0882 (19) 0.0708 (16) 0.0584 (15) 0.0197 (15) 0.0300 (14) −0.0112 (12)
C4 0.094 (2) 0.0695 (17) 0.086 (2) 0.0278 (16) 0.0473 (18) −0.0101 (15)
C29 0.0727 (17) 0.0385 (12) 0.110 (2) 0.0092 (12) 0.0121 (16) −0.0065 (14)
C9 0.0520 (14) 0.0715 (17) 0.095 (2) −0.0115 (12) 0.0176 (14) −0.0172 (15)
C27 0.0728 (18) 0.0692 (18) 0.092 (2) 0.0231 (14) 0.0062 (15) 0.0383 (16)

Geometric parameters (Å, º)

C28—C29 1.372 (5) C4A—C6A 1.490 (3)
C28—C27 1.375 (5) C3A—C2A 1.349 (3)
C28—H28 0.9300 C3A—H3A 0.9300
N1—C2A 1.352 (3) C21—C22 1.377 (3)
N1—C1A 1.356 (3) C21—H21 0.9300
N1—H1N 0.87 (3) C26—C27 1.386 (3)
N2—C4A 1.336 (3) C26—H26 0.9300
N2—C1A 1.346 (2) C6—C5 1.390 (3)
I1—Cu1 2.6801 (3) C6—H6 0.9300
Cu1—P1 2.2897 (5) C14—H14 0.9300
Cu1—P2 2.3047 (5) C11—C10 1.374 (4)
Cu1—S 2.3404 (6) C11—H11 0.9300
P1—C13 1.826 (2) C8—C9 1.385 (3)
P1—C7 1.8276 (19) C8—H8 0.9300
P1—C1 1.8301 (18) C18—C17 1.394 (3)
P2—C31 1.8271 (19) C18—H18 0.9300
P2—C19 1.8306 (18) C32—C33 1.396 (3)
P2—C25 1.832 (2) C32—H32 0.9300
S—C1A 1.691 (2) C22—H22 0.9300
C25—C26 1.386 (3) C10—C9 1.359 (4)
C25—C30 1.388 (3) C10—H10 0.9300
C36—C35 1.380 (3) C35—C34 1.362 (4)
C36—C31 1.385 (3) C35—H35 0.9300
C36—H36 0.9300 C2—C3 1.388 (3)
C31—C32 1.380 (3) C2—H2 0.9300
C7—C8 1.381 (3) C2A—C5A 1.491 (4)
C7—C12 1.390 (3) C17—C16 1.350 (4)
C13—C18 1.381 (3) C17—H17 0.9300
C13—C14 1.401 (3) C16—H16 0.9300
C20—C21 1.380 (3) C6A—H6A1 0.9600
C20—C19 1.391 (3) C6A—H6A2 0.9600
C20—H20 0.9300 C6A—H6A3 0.9600
C19—C24 1.388 (3) C33—C34 1.372 (4)
C15—C14 1.378 (3) C33—H33 0.9300
C15—C16 1.382 (4) C34—H34 0.9300
C15—H15 0.9300 C5A—H5A1 0.9600
C1—C6 1.387 (3) C5A—H5A2 0.9600
C1—C2 1.392 (3) C5A—H5A3 0.9600
C24—C23 1.389 (3) C5—C4 1.369 (5)
C24—H24 0.9300 C5—H5 0.9300
C12—C11 1.380 (3) C3—C4 1.365 (4)
C12—H12 0.9300 C3—H3 0.9300
C23—C22 1.372 (3) C4—H4 0.9300
C23—H23 0.9300 C29—H29 0.9300
C30—C29 1.378 (3) C9—H9 0.9300
C30—H30 0.9300 C27—H27 0.9300
C4A—C3A 1.379 (3)
C29—C28—C27 119.7 (2) C25—C26—H26 119.8
C29—C28—H28 120.1 C27—C26—H26 119.8
C27—C28—H28 120.1 C1—C6—C5 120.0 (3)
C2A—N1—C1A 123.70 (19) C1—C6—H6 120.0
C2A—N1—H1N 119.8 (19) C5—C6—H6 120.0
C1A—N1—H1N 116.5 (19) C15—C14—C13 120.3 (2)
C4A—N2—C1A 118.34 (19) C15—C14—H14 119.8
P1—Cu1—P2 114.845 (19) C13—C14—H14 119.8
P1—Cu1—S 107.14 (2) C10—C11—C12 120.1 (2)
P2—Cu1—S 108.80 (2) C10—C11—H11 119.9
P1—Cu1—I1 107.867 (15) C12—C11—H11 119.9
P2—Cu1—I1 104.908 (15) C7—C8—C9 119.9 (2)
S—Cu1—I1 113.453 (16) C7—C8—H8 120.1
C13—P1—C7 102.91 (9) C9—C8—H8 120.1
C13—P1—C1 102.99 (9) C13—C18—C17 120.3 (2)
C7—P1—C1 104.14 (9) C13—C18—H18 119.9
C13—P1—Cu1 117.33 (7) C17—C18—H18 119.9
C7—P1—Cu1 110.26 (6) C31—C32—C33 120.1 (2)
C1—P1—Cu1 117.49 (6) C31—C32—H32 120.0
C31—P2—C19 104.15 (9) C33—C32—H32 120.0
C31—P2—C25 102.49 (9) C23—C22—C21 119.9 (2)
C19—P2—C25 102.70 (8) C23—C22—H22 120.0
C31—P2—Cu1 112.72 (6) C21—C22—H22 120.0
C19—P2—Cu1 118.86 (6) C9—C10—C11 119.6 (2)
C25—P2—Cu1 114.09 (7) C9—C10—H10 120.2
C1A—S—Cu1 113.57 (7) C11—C10—H10 120.2
C26—C25—C30 118.6 (2) C34—C35—C36 119.9 (3)
C26—C25—P2 117.47 (17) C34—C35—H35 120.1
C30—C25—P2 123.89 (17) C36—C35—H35 120.1
C35—C36—C31 121.2 (3) C3—C2—C1 120.6 (2)
C35—C36—H36 119.4 C3—C2—H2 119.7
C31—C36—H36 119.4 C1—C2—H2 119.7
C32—C31—C36 118.4 (2) C3A—C2A—N1 117.0 (2)
C32—C31—P2 124.09 (16) C3A—C2A—C5A 125.5 (2)
C36—C31—P2 117.43 (17) N1—C2A—C5A 117.5 (2)
C8—C7—C12 118.64 (19) C16—C17—C18 120.6 (3)
C8—C7—P1 123.06 (15) C16—C17—H17 119.7
C12—C7—P1 118.01 (15) C18—C17—H17 119.7
C18—C13—C14 118.5 (2) C17—C16—C15 120.2 (2)
C18—C13—P1 118.66 (16) C17—C16—H16 119.9
C14—C13—P1 122.82 (17) C15—C16—H16 119.9
C21—C20—C19 120.6 (2) C4A—C6A—H6A1 109.5
C21—C20—H20 119.7 C4A—C6A—H6A2 109.5
C19—C20—H20 119.7 H6A1—C6A—H6A2 109.5
C24—C19—C20 118.64 (18) C4A—C6A—H6A3 109.5
C24—C19—P2 118.91 (14) H6A1—C6A—H6A3 109.5
C20—C19—P2 122.45 (15) H6A2—C6A—H6A3 109.5
N2—C1A—N1 119.00 (18) C34—C33—C32 120.2 (3)
N2—C1A—S 120.84 (15) C34—C33—H33 119.9
N1—C1A—S 120.16 (15) C32—C33—H33 119.9
C14—C15—C16 120.0 (2) C35—C34—C33 120.1 (2)
C14—C15—H15 120.0 C35—C34—H34 119.9
C16—C15—H15 120.0 C33—C34—H34 119.9
C6—C1—C2 118.65 (19) C2A—C5A—H5A1 109.5
C6—C1—P1 122.95 (17) C2A—C5A—H5A2 109.5
C2—C1—P1 118.40 (16) H5A1—C5A—H5A2 109.5
C19—C24—C23 120.29 (19) C2A—C5A—H5A3 109.5
C19—C24—H24 119.9 H5A1—C5A—H5A3 109.5
C23—C24—H24 119.9 H5A2—C5A—H5A3 109.5
C11—C12—C7 120.6 (2) C4—C5—C6 120.5 (3)
C11—C12—H12 119.7 C4—C5—H5 119.7
C7—C12—H12 119.7 C6—C5—H5 119.7
C22—C23—C24 120.3 (2) C4—C3—C2 119.9 (3)
C22—C23—H23 119.8 C4—C3—H3 120.1
C24—C23—H23 119.8 C2—C3—H3 120.1
C29—C30—C25 120.6 (3) C3—C4—C5 120.3 (2)
C29—C30—H30 119.7 C3—C4—H4 119.8
C25—C30—H30 119.7 C5—C4—H4 119.8
N2—C4A—C3A 122.6 (2) C28—C29—C30 120.4 (3)
N2—C4A—C6A 116.1 (2) C28—C29—H29 119.8
C3A—C4A—C6A 121.3 (2) C30—C29—H29 119.8
C2A—C3A—C4A 119.3 (2) C10—C9—C8 121.2 (3)
C2A—C3A—H3A 120.3 C10—C9—H9 119.4
C4A—C3A—H3A 120.3 C8—C9—H9 119.4
C22—C21—C20 120.2 (2) C28—C27—C26 120.3 (3)
C22—C21—H21 119.9 C28—C27—H27 119.8
C20—C21—H21 119.9 C26—C27—H27 119.8
C25—C26—C27 120.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···I1 0.87 (3) 2.62 (3) 3.4858 (18) 176 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5472).

References

  1. Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fujisawa, K., Fujita, K., Takahashi, T., Kitajima, N., Moro-oka, Y., Matsunaga, Y., Miyashita, Y. & Okamoto, K. (2004). Inorg. Chem. Commun. 7, 1188–1190.
  4. Gong, F., Wang, Q., Chen, J., Yang, Z., Liu, M., Li, S. & Yang, G. (2010). Inorg. Chem. 49, 1658–1666. [DOI] [PubMed]
  5. Kang, J. H. (2006). J. Biochem. Mol. Biol. 39, 335–338. [DOI] [PubMed]
  6. Lemos, S. S., Camargo, M. A., Cardoso, Z. Z., Deflon, V. M., Försterling, F. H. & Hagenbach, A. (2001). Polyhedron, 20, 849–854.
  7. Lobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008–1016.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977. [DOI] [PMC free article] [PubMed]
  10. Reymond, S. & Cossy, J. (2008). Chem. Rev. 108, 5359–5406. [DOI] [PubMed]
  11. Santra, P. K., Das, D., Misra, T. K., Roy, R., Sinhaa, C. & Pengb, S.-M. (1999). Polyhedron, 18, 1909–1915.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Tian, Y.-Q., Xu, H.-J., Weng, L.-H., Chen, Z.-X., Zhao, D.-Y. & You, X.-Z. (2004). Eur. J. Inorg. Chem. pp. 1813–1816.
  14. Voutsas, G. P., Kokkou, S. C., Cheer, C. J., Aslanidis, P. & Karagiannidis, P. (1995). Polyhedron, 14, 2287–2292.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021010/lh5472sup1.cif

e-68-0m773-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021010/lh5472Isup2.hkl

e-68-0m773-Isup2.hkl (448.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES