Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):m785. doi: 10.1107/S1600536812021460

Dibromidobis[1-(2-bromo­benz­yl)-3-(pyrimidin-2-yl)-1H-imidazol-2(3H)-one]copper(II)

Chun-Xin Lu a,*
PMCID: PMC3379115  PMID: 22719336

Abstract

In the title complex, [CuBr2(C14H11BrN4O)2], the CuII ion is located on an inversion centre and is coordinated by two ketonic O atoms, two N atoms and two Br atoms, forming a distorted octahedral coordination environment. The two carbonyl groups are trans positioned with C=O bond lengths of 1.256 (5) Å, in agreement with a classical carbonyl bond. The Cu—O bond length is 2.011 (3) Å. The two bromo­benzyl rings are approximately parallel to one another, forming a dihedral angle of 70.1 (4)° with the coordination plane.

Related literature  

For general background, see: Moncol et al. (2008); Wu et al. (2003); Anbu & Kandaswamy (2012). For related structures, see: Citadelle et al. (2010); Liu et al. (2011); Marjani et al. (2005); Meghdadi et al. (2012).graphic file with name e-68-0m785-scheme1.jpg

Experimental  

Crystal data  

  • [CuBr2(C14H11BrN4O)2]

  • M r = 885.72

  • Monoclinic, Inline graphic

  • a = 8.6803 (11) Å

  • b = 23.0354 (8) Å

  • c = 7.8543 (9) Å

  • β = 109.419 (1)°

  • V = 1481.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.18 mm−1

  • T = 298 K

  • 0.43 × 0.30 × 0.14 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.177, T max = 0.479

  • 7275 measured reflections

  • 2622 independent reflections

  • 2019 reflections with I > 2σ(I)

  • R int = 0.066

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.117

  • S = 1.01

  • 2622 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −0.90 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021460/ru2034sup1.cif

e-68-0m785-sup1.cif (16KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812021460/ru2034Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021460/ru2034Isup2.hkl

e-68-0m785-Isup2.hkl (128.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the Natural Science Foundation of China (21072170).

supplementary crystallographic information

Comment

Cu2+ cation has been widely studied since a host of low-molecular-weight copper complexes have been proven beneficial against several diseases such as turberculosis, rheumatoid, gastric ulcers, and cancers. And it is well known that copper(II) complexes with different ligands usually show flexible coordination environment. The 1-(2-bromobenzyl)-3-(pyrimidin-2-yl)imidazolium bromide was used as the ligand, reacting with excessive copper powder in air, giving a CuII compound. We here report the crystal structure of the title compound (I).

Bond lengths and angles in the title molecule (Fig. 1) are within normal ranges. The C=O bond distance is 1.256 (5) Å and Cu—O bond distance is 2.013 (3) Å. The two bromobenzyl rings are approximately parallel to each other. The dihedral angle between the bromobenzyl ring and the coordination plane is 70.1 (4)°.

Experimental

A solution of 1-(2-bromobenzyl)-3-(pyrimidin-2-yl)imidazolium bromide (396 mg, 1.0 mmol) in 10 ml of CH3CN was treated with copper powder (38 mg, 0.6 mmol). The mixture was allowed to react at 80 °C for 2 days in air. The solution was filtered through silica to remove unreacted copper. The filtrate was concentrated to ca 2 ml. Addition of Et2O (20 ml) to the filtrate afforded a yellow precipitate. The crystals of this complex suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into its acetonitrile solution.

Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.

Crystal data

[CuBr2(C14H11BrN4O)2] F(000) = 862
Mr = 885.72 Dx = 1.986 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.6803 (11) Å Cell parameters from 7275 reflections
b = 23.0354 (8) Å θ = 1.8–25.1°
c = 7.8543 (9) Å µ = 6.18 mm1
β = 109.419 (1)° T = 298 K
V = 1481.2 (3) Å3 Block, yellow
Z = 2 0.43 × 0.30 × 0.14 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2622 independent reflections
Radiation source: fine-focus sealed tube 2019 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.066
phi and ω scans θmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→8
Tmin = 0.177, Tmax = 0.479 k = −27→20
7275 measured reflections l = −9→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0654P)2] where P = (Fo2 + 2Fc2)/3
2622 reflections (Δ/σ)max < 0.001
196 parameters Δρmax = 1.31 e Å3
0 restraints Δρmin = −0.90 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.5000 0.5000 0.5000 0.0270 (3)
N1 0.7847 (4) 0.41135 (18) 0.7064 (5) 0.0240 (9)
N2 0.6658 (4) 0.37501 (18) 0.8889 (5) 0.0245 (9)
N3 0.6973 (5) 0.46886 (18) 0.4448 (5) 0.0240 (9)
N4 0.9437 (5) 0.41415 (19) 0.5252 (6) 0.0307 (11)
Br1 0.68599 (7) 0.22945 (3) 1.05716 (9) 0.0525 (2)
Br2 0.70578 (6) 0.54952 (2) 0.82796 (7) 0.0343 (2)
O1 0.5017 (4) 0.42702 (15) 0.6410 (4) 0.0271 (8)
C1 0.6372 (5) 0.4069 (2) 0.7368 (6) 0.0249 (11)
C2 0.8315 (6) 0.3607 (2) 0.9542 (7) 0.0308 (13)
H2 0.8821 0.3393 1.0582 0.037*
C3 0.9052 (6) 0.3822 (2) 0.8467 (7) 0.0300 (12)
H3 1.0154 0.3788 0.8603 0.036*
C4 0.8100 (6) 0.4324 (2) 0.5504 (7) 0.0242 (11)
C5 0.9699 (6) 0.4335 (2) 0.3762 (8) 0.0372 (14)
H5 1.0654 0.4226 0.3557 0.045*
C6 0.8598 (6) 0.4692 (2) 0.2517 (7) 0.0342 (13)
H6 0.8773 0.4814 0.1467 0.041*
C7 0.7231 (6) 0.4854 (2) 0.2919 (7) 0.0286 (12)
H7 0.6457 0.5088 0.2104 0.034*
C8 0.5415 (6) 0.3582 (2) 0.9661 (7) 0.0295 (12)
H8A 0.4736 0.3916 0.9664 0.035*
H8B 0.5946 0.3464 1.0905 0.035*
C9 0.4349 (6) 0.3096 (2) 0.8659 (7) 0.0295 (12)
C10 0.4763 (6) 0.2516 (3) 0.8917 (7) 0.0344 (13)
C11 0.3759 (8) 0.2078 (3) 0.8035 (9) 0.0502 (17)
H11 0.4089 0.1693 0.8262 0.060*
C12 0.2274 (8) 0.2208 (3) 0.6820 (10) 0.058 (2)
H12 0.1585 0.1911 0.6207 0.070*
C13 0.1780 (7) 0.2780 (3) 0.6490 (9) 0.0559 (19)
H13 0.0767 0.2868 0.5648 0.067*
C14 0.2800 (6) 0.3221 (3) 0.7416 (8) 0.0414 (15)
H14 0.2455 0.3605 0.7213 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0258 (4) 0.0231 (5) 0.0378 (5) 0.0072 (4) 0.0181 (4) 0.0100 (4)
N1 0.023 (2) 0.023 (2) 0.028 (2) 0.0032 (18) 0.0107 (17) 0.0006 (19)
N2 0.027 (2) 0.022 (2) 0.026 (2) −0.0005 (19) 0.0111 (17) 0.0003 (19)
N3 0.027 (2) 0.021 (2) 0.025 (2) 0.0001 (19) 0.0106 (18) 0.0016 (19)
N4 0.026 (2) 0.032 (3) 0.040 (3) 0.004 (2) 0.0180 (19) 0.002 (2)
Br1 0.0517 (4) 0.0387 (4) 0.0715 (5) 0.0133 (3) 0.0262 (3) 0.0235 (3)
Br2 0.0355 (3) 0.0329 (4) 0.0373 (4) 0.0010 (2) 0.0158 (2) −0.0018 (2)
O1 0.0232 (17) 0.0231 (19) 0.037 (2) 0.0054 (15) 0.0129 (15) 0.0114 (16)
C1 0.027 (3) 0.025 (3) 0.025 (3) −0.002 (2) 0.011 (2) 0.000 (2)
C2 0.029 (3) 0.034 (3) 0.027 (3) 0.004 (2) 0.006 (2) 0.006 (2)
C3 0.023 (2) 0.035 (3) 0.032 (3) 0.005 (2) 0.008 (2) 0.004 (3)
C4 0.027 (2) 0.018 (3) 0.031 (3) −0.003 (2) 0.014 (2) −0.004 (2)
C5 0.033 (3) 0.037 (4) 0.050 (4) −0.001 (3) 0.025 (3) −0.007 (3)
C6 0.042 (3) 0.034 (3) 0.035 (3) −0.001 (3) 0.023 (3) −0.005 (3)
C7 0.029 (3) 0.025 (3) 0.032 (3) 0.001 (2) 0.010 (2) −0.002 (2)
C8 0.037 (3) 0.028 (3) 0.029 (3) 0.003 (3) 0.017 (2) 0.003 (2)
C9 0.035 (3) 0.027 (3) 0.034 (3) −0.002 (2) 0.021 (2) 0.007 (2)
C10 0.034 (3) 0.034 (3) 0.042 (3) 0.000 (3) 0.021 (2) 0.003 (3)
C11 0.058 (4) 0.034 (4) 0.074 (5) −0.012 (3) 0.042 (4) −0.008 (3)
C12 0.055 (4) 0.055 (5) 0.073 (5) −0.030 (4) 0.033 (4) −0.027 (4)
C13 0.033 (3) 0.078 (6) 0.056 (4) −0.013 (4) 0.014 (3) −0.002 (4)
C14 0.037 (3) 0.047 (4) 0.046 (3) 0.002 (3) 0.022 (3) 0.006 (3)

Geometric parameters (Å, º)

Cu1—O1i 2.011 (3) C3—H3 0.9300
Cu1—O1 2.011 (3) C5—C6 1.387 (8)
Cu1—N3i 2.032 (4) C5—H5 0.9300
Cu1—N3 2.032 (4) C6—C7 1.378 (7)
Cu1—Br2 2.8404 (6) C6—H6 0.9300
Cu1—Br2i 2.8404 (6) C7—H7 0.9300
N1—C1 1.383 (6) C8—C9 1.498 (7)
N1—C4 1.400 (6) C8—H8A 0.9700
N1—C3 1.412 (6) C8—H8B 0.9700
N2—C1 1.353 (6) C9—C10 1.381 (8)
N2—C2 1.396 (6) C9—C14 1.404 (7)
N2—C8 1.455 (6) C10—C11 1.362 (8)
N3—C4 1.346 (6) C11—C12 1.358 (9)
N3—C7 1.348 (6) C11—H11 0.9300
N4—C4 1.309 (6) C12—C13 1.384 (9)
N4—C5 1.340 (7) C12—H12 0.9300
Br1—C10 1.921 (5) C13—C14 1.384 (9)
O1—C1 1.256 (5) C13—H13 0.9300
C2—C3 1.314 (7) C14—H14 0.9300
C2—H2 0.9300
O1i—Cu1—O1 180.00 (11) N4—C4—N1 115.2 (4)
O1i—Cu1—N3i 88.28 (15) N3—C4—N1 117.5 (4)
O1—Cu1—N3i 91.72 (15) N4—C5—C6 122.4 (5)
O1i—Cu1—N3 91.72 (15) N4—C5—H5 118.8
O1—Cu1—N3 88.28 (15) C6—C5—H5 118.8
N3i—Cu1—N3 180.000 (1) C7—C6—C5 116.3 (5)
O1i—Cu1—Br2 92.92 (10) C7—C6—H6 121.9
O1—Cu1—Br2 87.08 (10) C5—C6—H6 121.9
N3i—Cu1—Br2 89.16 (11) N3—C7—C6 122.6 (5)
N3—Cu1—Br2 90.84 (11) N3—C7—H7 118.7
O1i—Cu1—Br2i 87.08 (10) C6—C7—H7 118.7
O1—Cu1—Br2i 92.92 (10) N2—C8—C9 113.2 (4)
N3i—Cu1—Br2i 90.84 (11) N2—C8—H8A 108.9
N3—Cu1—Br2i 89.16 (11) C9—C8—H8A 108.9
Br2—Cu1—Br2i 180.00 (2) N2—C8—H8B 108.9
C1—N1—C4 126.9 (4) C9—C8—H8B 108.9
C1—N1—C3 108.5 (4) H8A—C8—H8B 107.8
C4—N1—C3 123.8 (4) C10—C9—C14 116.3 (5)
C1—N2—C2 108.5 (4) C10—C9—C8 124.1 (5)
C1—N2—C8 124.7 (4) C14—C9—C8 119.5 (5)
C2—N2—C8 126.9 (4) C11—C10—C9 123.4 (5)
C4—N3—C7 115.0 (4) C11—C10—Br1 116.7 (5)
C4—N3—Cu1 125.5 (3) C9—C10—Br1 119.9 (4)
C7—N3—Cu1 119.4 (3) C12—C11—C10 119.4 (6)
C4—N4—C5 116.2 (4) C12—C11—H11 120.3
C1—O1—Cu1 118.2 (3) C10—C11—H11 120.3
O1—C1—N2 126.1 (4) C11—C12—C13 120.3 (6)
O1—C1—N1 127.3 (4) C11—C12—H12 119.9
N2—C1—N1 106.5 (4) C13—C12—H12 119.9
C3—C2—N2 109.7 (4) C12—C13—C14 119.8 (6)
C3—C2—H2 125.1 C12—C13—H13 120.1
N2—C2—H2 125.1 C14—C13—H13 120.1
C2—C3—N1 106.8 (4) C13—C14—C9 120.8 (6)
C2—C3—H3 126.6 C13—C14—H14 119.6
N1—C3—H3 126.6 C9—C14—H14 119.6
N4—C4—N3 127.3 (5)

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2034).

References

  1. Anbu, S. & Kandaswamy, M. (2012). Inorg. Chim. Acta, 385, 45–52.
  2. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Winsonsin, USA.
  3. Citadelle, C. A., Nouy, E. L., Bisaro, F., Slawin, A. M. Z. & Cazin, C. S. J. (2010). Dalton Trans. 39, 4489–4491. [DOI] [PubMed]
  4. Liu, B., Zhang, Y., Xu, D. C. & Chen, W. Z. (2011). Chem. Commun. 41, 2883–2885. [DOI] [PubMed]
  5. Marjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11–m14.
  6. Meghdadi, S., Mereiter, K., Langer, V., Amiri, A., Erami, R. S., Massoud, A. A. & Amirnasr, M. (2012). Inorg. Chim. Acta, 385, 31–38.
  7. Moncol, J., Segľa, P., Mikloš, D., Fischer, A. & Marian, K. (2008). Acta Cryst. E64, m509–m510. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wu, G. G., Wang, G. P., Fu, X. C. & Zhu, L. G. (2003). Molecules, 8, 287–296.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021460/ru2034sup1.cif

e-68-0m785-sup1.cif (16KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812021460/ru2034Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021460/ru2034Isup2.hkl

e-68-0m785-Isup2.hkl (128.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES