Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):m793. doi: 10.1107/S1600536812023306

Tetra­kis(pyridazine-κN)bis­(thio­cyanato-κN)nickel(II) pyridazine disolvate

Susanne Wöhlert a,*, Mario Wriedt b, Inke Jess a, Christian Näther a
PMCID: PMC3379122  PMID: 22719343

Abstract

The reaction of nickel(II) thio­cyanate with an excess of pyridazine leads to single crystals of the title compound, [Ni(NCS)2(C4H4N2)4]·2C4H4N2. The NiII cations are coordinated by two terminal N-bonded thio­cyanate anions (trans) and four pyridazine ligands in a slightly distorted octa­hedral geometry. The discrete complexes are arranged into layers parallel to the ab plane which are separated by additional non-coordinated pyridazine ligands.

Related literature  

For related pyridazine coordination compounds, see: Boeckmann et al. (2011); Lloret et al. (1998); Yi et al. (2006); Wriedt & Näther (2009, 2011). graphic file with name e-68-0m793-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(NCS)2(C4H4N2)4]·2C4H4N2

  • M r = 655.42

  • Triclinic, Inline graphic

  • a = 11.2111 (9) Å

  • b = 12.033 (1) Å

  • c = 12.5409 (10) Å

  • α = 62.287 (9)°

  • β = 88.983 (10)°

  • γ = 88.949 (10)°

  • V = 1497.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 200 K

  • 0.06 × 0.04 × 0.03 mm

Data collection  

  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) T min = 0.916, T max = 0.973

  • 11937 measured reflections

  • 6400 independent reflections

  • 4719 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.084

  • S = 0.97

  • 6400 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023306/bt5930sup1.cif

e-68-0m793-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023306/bt5930Isup2.hkl

e-68-0m793-Isup2.hkl (313.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We also thank Professor Dr Wolfgang Bensch for access to his experimental facility.

supplementary crystallographic information

Comment

Currently, we are interested in the synthesis and characterization of coordination polymers based on Mn(II), Fe(II), Co(II), Ni(II) and Cd(II) thiocyanates and pyridazine as co-ligand. Only a few compounds based on Cobalt, Nickel and Cadmium are structurally characterized (Boeckmann et al., 2011; Lloret et al., 1998; Yi et al., 2006; Wriedt & Näther, 2011; Wriedt & Näther, 2009). In this context we have reported on two different modifications of a trinuclear nickel(II) complex of composition [Ni3(NCS)6(pyridazine)6] (Wriedt & Näther, 2009). In our ongoing investigation in this field we have isolated light-green single-crystals of a further compound by the reaction of nickel(II) thiocyanate with an excess of pyridazine, that were characterized by single-crystal X-ray diffraction. In the crystal structure of the title compound each nickel(II) cation is coordinated by two terminal N-bonded thiocyanato anions and four pyridazine ligands in a slightly distorted octahedral geometry (Fig. 1). The NiN6 distances are ranges from 2.0494 (15) to 2.1530 (15) Å and the angles are between 87.33 (5) ° and 179.71 (7) °. Because of sterical reasons only one of the two pyridazine nitrogen atoms is involved in metal coordination. In the crystal structure the discrete complexes are arranged in layers that are parallel to the ab plane. These layers are separated by additional pyridazine ligands that are not coordinated to the metal centers (Fig. 2). The shortest intermolecular Ni···Ni distances amounts to 8.0823 (9) Å.

Experimental

Nickel(II) thiocyanate (Ni(NCS)2) and pyridazine were obtained from Alfa Aesar. All chemicals were used without further purification. 0.125 mmol (21.7 mg) Ni(NCS)2 and 2.76 mmol (200 µL) pyridazine were reacted in a closed snap-vial without stirring. Light-green single crystals of the title compounds were obtained after two weeks.

Refinement

All H atoms were located in a difference map but were positioned with idealized geometry and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) and C—H = 0.95 Å. PLATON (Spek, 2009) detected a pseudo-C centring in the structure. Nevertheless, the structure is just triclinic primitive.

Figures

Fig. 1.

Fig. 1.

: Crystal structure of the title compound with atom labels and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

: Crystal structure of the title compound with view along the crystallographic b-axis.

Crystal data

[Ni(NCS)2(C4H4N2)4]·2C4H4N2 Z = 2
Mr = 655.42 F(000) = 676
Triclinic, P1 Dx = 1.454 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.2111 (9) Å Cell parameters from 11937 reflections
b = 12.033 (1) Å θ = 2.6–27.0°
c = 12.5409 (10) Å µ = 0.83 mm1
α = 62.287 (9)° T = 200 K
β = 88.983 (10)° Block, light-green
γ = 88.949 (10)° 0.06 × 0.04 × 0.03 mm
V = 1497.4 (2) Å3

Data collection

Stoe IPDS-1 diffractometer 6400 independent reflections
Radiation source: fine-focus sealed tube 4719 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
phi scan θmax = 27.0°, θmin = 2.6°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) h = −14→14
Tmin = 0.916, Tmax = 0.973 k = −15→15
11937 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0504P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.001
6400 reflections Δρmax = 0.39 e Å3
389 parameters Δρmin = −0.40 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0149 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.752765 (19) 0.75179 (2) 0.993234 (18) 0.01640 (8)
N2 0.85894 (13) 0.65700 (14) 1.14111 (13) 0.0237 (3)
C2 0.93634 (15) 0.60587 (16) 1.20694 (14) 0.0195 (3)
S2 1.04648 (4) 0.53396 (5) 1.29882 (4) 0.03462 (13)
N1 0.64734 (13) 0.84717 (14) 0.84542 (13) 0.0241 (3)
C1 0.56476 (16) 0.89404 (16) 0.78585 (14) 0.0204 (4)
S1 0.44826 (5) 0.95934 (5) 0.70169 (5) 0.03734 (14)
N10 0.69744 (12) 0.57958 (14) 0.99727 (12) 0.0212 (3)
N11 0.65668 (14) 0.48848 (14) 1.10237 (14) 0.0281 (3)
C11 0.62296 (18) 0.38099 (18) 1.10720 (19) 0.0332 (4)
H11 0.5923 0.3180 1.1815 0.040*
C12 0.62968 (18) 0.3551 (2) 1.0107 (2) 0.0365 (5)
H12 0.6056 0.2765 1.0180 0.044*
C13 0.67269 (19) 0.4479 (2) 0.9041 (2) 0.0398 (5)
H13 0.6806 0.4359 0.8346 0.048*
C14 0.70445 (17) 0.5607 (2) 0.90134 (17) 0.0301 (4)
H14 0.7323 0.6269 0.8275 0.036*
N20 0.61071 (12) 0.74611 (13) 1.11065 (12) 0.0185 (3)
N21 0.54160 (13) 0.85064 (14) 1.06923 (12) 0.0221 (3)
C21 0.45590 (16) 0.85656 (18) 1.14045 (16) 0.0267 (4)
H21 0.4084 0.9309 1.1115 0.032*
C22 0.43142 (18) 0.7605 (2) 1.25495 (17) 0.0329 (5)
H22 0.3682 0.7680 1.3027 0.039*
C23 0.50158 (17) 0.65455 (18) 1.29662 (16) 0.0287 (4)
H23 0.4887 0.5855 1.3740 0.034*
C24 0.59298 (16) 0.65231 (16) 1.22036 (14) 0.0223 (4)
H24 0.6444 0.5809 1.2481 0.027*
N30 0.80605 (12) 0.92471 (14) 0.98921 (13) 0.0210 (3)
N31 0.83861 (14) 1.02153 (14) 0.88415 (14) 0.0278 (3)
C31 0.86974 (18) 1.12832 (19) 0.88297 (19) 0.0336 (4)
H31 0.8940 1.1960 0.8084 0.040*
C32 0.86879 (19) 1.1465 (2) 0.9847 (2) 0.0382 (5)
H32 0.8915 1.2242 0.9804 0.046*
C33 0.83376 (19) 1.0480 (2) 1.0911 (2) 0.0387 (5)
H33 0.8298 1.0549 1.1635 0.046*
C34 0.80415 (17) 0.93705 (19) 1.08911 (17) 0.0290 (4)
H34 0.7815 0.8669 1.1627 0.035*
N40 0.89770 (12) 0.75517 (13) 0.87968 (12) 0.0192 (3)
N41 0.96253 (13) 0.64770 (14) 0.92420 (12) 0.0228 (3)
C41 1.05424 (16) 0.64035 (18) 0.85962 (16) 0.0266 (4)
H41 1.0987 0.5640 0.8902 0.032*
C42 1.08890 (17) 0.7384 (2) 0.74940 (17) 0.0316 (4)
H42 1.1567 0.7303 0.7069 0.038*
C43 1.02254 (18) 0.84661 (19) 0.70416 (16) 0.0298 (4)
H43 1.0420 0.9163 0.6291 0.036*
C44 0.92462 (16) 0.85029 (17) 0.77327 (15) 0.0236 (4)
H44 0.8756 0.9236 0.7429 0.028*
N50 0.70575 (16) 1.39686 (16) 0.45667 (15) 0.0364 (4)
N51 0.61715 (16) 1.33478 (17) 0.43752 (15) 0.0374 (4)
C51 0.6319 (2) 1.2132 (2) 0.47219 (19) 0.0387 (5)
H51 0.5686 1.1701 0.4587 0.046*
C52 0.7336 (2) 1.1454 (2) 0.5268 (2) 0.0403 (5)
H52 0.7403 1.0583 0.5501 0.048*
C53 0.82377 (19) 1.2079 (2) 0.54582 (19) 0.0371 (5)
H53 0.8959 1.1666 0.5831 0.044*
C54 0.80526 (19) 1.3355 (2) 0.50801 (18) 0.0339 (5)
H54 0.8675 1.3812 0.5197 0.041*
N60 1.18977 (17) 1.12073 (18) 0.50816 (18) 0.0425 (4)
N61 1.12255 (18) 1.1575 (2) 0.57472 (19) 0.0497 (5)
C61 1.1514 (3) 1.2601 (3) 0.5806 (2) 0.0525 (7)
H61 1.1019 1.2854 0.6279 0.063*
C62 1.2485 (3) 1.3331 (2) 0.5228 (3) 0.0559 (7)
H62 1.2665 1.4061 0.5301 0.067*
C63 1.3172 (2) 1.2955 (2) 0.4547 (3) 0.0535 (7)
H63 1.3855 1.3411 0.4120 0.064*
C64 1.2832 (2) 1.1884 (2) 0.4506 (2) 0.0444 (6)
H64 1.3301 1.1613 0.4030 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01669 (12) 0.01298 (12) 0.01687 (12) 0.00196 (7) 0.00033 (7) −0.00480 (8)
N2 0.0236 (7) 0.0211 (8) 0.0227 (7) 0.0033 (6) −0.0016 (6) −0.0072 (6)
C2 0.0225 (8) 0.0150 (8) 0.0199 (7) −0.0005 (7) 0.0014 (7) −0.0073 (7)
S2 0.0301 (3) 0.0309 (3) 0.0348 (3) 0.0052 (2) −0.0147 (2) −0.0082 (2)
N1 0.0249 (8) 0.0231 (8) 0.0215 (7) 0.0036 (6) −0.0018 (6) −0.0081 (6)
C1 0.0262 (9) 0.0146 (8) 0.0191 (7) −0.0016 (7) 0.0019 (7) −0.0068 (7)
S1 0.0335 (3) 0.0295 (3) 0.0393 (3) 0.0034 (2) −0.0174 (2) −0.0074 (2)
N10 0.0193 (7) 0.0183 (8) 0.0248 (7) −0.0001 (6) 0.0008 (6) −0.0090 (6)
N11 0.0330 (8) 0.0186 (8) 0.0301 (8) −0.0047 (7) 0.0069 (7) −0.0091 (7)
C11 0.0324 (10) 0.0206 (10) 0.0431 (11) −0.0054 (8) 0.0038 (9) −0.0118 (9)
C12 0.0315 (10) 0.0283 (11) 0.0568 (13) −0.0053 (8) −0.0018 (9) −0.0256 (10)
C13 0.0416 (12) 0.0464 (14) 0.0484 (12) −0.0086 (10) −0.0005 (10) −0.0361 (11)
C14 0.0308 (10) 0.0336 (11) 0.0295 (9) −0.0064 (8) 0.0011 (8) −0.0175 (8)
N20 0.0192 (7) 0.0154 (7) 0.0195 (6) 0.0027 (6) 0.0004 (5) −0.0070 (6)
N21 0.0226 (7) 0.0183 (8) 0.0222 (7) 0.0053 (6) 0.0007 (6) −0.0070 (6)
C21 0.0270 (9) 0.0252 (10) 0.0286 (9) 0.0076 (8) 0.0008 (7) −0.0136 (8)
C22 0.0325 (10) 0.0377 (12) 0.0293 (9) 0.0027 (9) 0.0093 (8) −0.0168 (9)
C23 0.0337 (10) 0.0272 (10) 0.0204 (8) 0.0000 (8) 0.0055 (7) −0.0071 (8)
C24 0.0260 (9) 0.0181 (9) 0.0203 (8) 0.0013 (7) 0.0006 (7) −0.0068 (7)
N30 0.0185 (7) 0.0172 (7) 0.0260 (7) 0.0019 (6) −0.0016 (6) −0.0089 (6)
N31 0.0319 (8) 0.0174 (8) 0.0314 (8) −0.0033 (6) 0.0060 (7) −0.0093 (7)
C31 0.0341 (10) 0.0224 (10) 0.0412 (11) −0.0069 (8) 0.0062 (9) −0.0123 (9)
C32 0.0348 (11) 0.0295 (11) 0.0588 (13) −0.0059 (9) −0.0007 (10) −0.0275 (11)
C33 0.0408 (12) 0.0428 (13) 0.0445 (11) −0.0090 (10) −0.0011 (9) −0.0302 (11)
C34 0.0325 (10) 0.0276 (10) 0.0281 (9) −0.0054 (8) −0.0010 (8) −0.0138 (8)
N40 0.0194 (7) 0.0157 (7) 0.0205 (6) 0.0001 (6) 0.0011 (5) −0.0068 (6)
N41 0.0234 (7) 0.0181 (8) 0.0240 (7) 0.0045 (6) 0.0023 (6) −0.0075 (6)
C41 0.0260 (9) 0.0260 (10) 0.0278 (9) 0.0054 (8) 0.0025 (7) −0.0127 (8)
C42 0.0292 (10) 0.0374 (12) 0.0289 (9) 0.0002 (8) 0.0104 (8) −0.0164 (9)
C43 0.0363 (10) 0.0280 (10) 0.0205 (8) −0.0062 (8) 0.0080 (7) −0.0076 (8)
C44 0.0311 (9) 0.0159 (9) 0.0200 (8) 0.0015 (7) 0.0013 (7) −0.0053 (7)
N50 0.0455 (10) 0.0223 (9) 0.0359 (9) −0.0048 (8) −0.0030 (8) −0.0086 (7)
N51 0.0394 (10) 0.0320 (10) 0.0333 (9) −0.0052 (8) −0.0048 (7) −0.0086 (8)
C51 0.0455 (13) 0.0367 (12) 0.0370 (10) −0.0160 (10) 0.0042 (9) −0.0192 (10)
C52 0.0516 (14) 0.0242 (11) 0.0462 (12) −0.0015 (10) 0.0107 (10) −0.0176 (10)
C53 0.0339 (11) 0.0377 (12) 0.0352 (10) 0.0051 (9) 0.0074 (8) −0.0137 (9)
C54 0.0351 (11) 0.0321 (11) 0.0322 (10) −0.0095 (9) 0.0004 (8) −0.0127 (9)
N60 0.0403 (10) 0.0337 (10) 0.0583 (12) −0.0004 (8) −0.0048 (9) −0.0254 (9)
N61 0.0437 (11) 0.0400 (12) 0.0573 (12) 0.0049 (9) 0.0056 (9) −0.0163 (10)
C61 0.0640 (17) 0.0532 (16) 0.0474 (13) 0.0264 (14) −0.0112 (12) −0.0299 (13)
C62 0.0652 (17) 0.0297 (13) 0.0843 (19) 0.0167 (12) −0.0445 (15) −0.0353 (14)
C63 0.0351 (12) 0.0342 (13) 0.0771 (18) −0.0056 (10) −0.0074 (12) −0.0136 (13)
C64 0.0445 (13) 0.0424 (14) 0.0494 (13) 0.0022 (11) 0.0042 (10) −0.0242 (11)

Geometric parameters (Å, º)

Ni1—N1 2.0494 (15) C32—C33 1.366 (3)
Ni1—N2 2.0538 (15) C32—H32 0.9500
Ni1—N40 2.1298 (13) C33—C34 1.393 (3)
Ni1—N20 2.1299 (13) C33—H33 0.9500
Ni1—N10 2.1516 (15) C34—H34 0.9500
Ni1—N30 2.1530 (15) N40—C44 1.327 (2)
N2—C2 1.160 (2) N40—N41 1.3494 (19)
C2—S2 1.6387 (18) N41—C41 1.325 (2)
N1—C1 1.161 (2) C41—C42 1.391 (3)
C1—S1 1.6362 (18) C41—H41 0.9500
N10—C14 1.325 (2) C42—C43 1.365 (3)
N10—N11 1.342 (2) C42—H42 0.9500
N11—C11 1.328 (3) C43—C44 1.399 (2)
C11—C12 1.384 (3) C43—H43 0.9500
C11—H11 0.9500 C44—H44 0.9500
C12—C13 1.369 (3) N50—C54 1.326 (3)
C12—H12 0.9500 N50—N51 1.343 (3)
C13—C14 1.394 (3) N51—C51 1.326 (3)
C13—H13 0.9500 C51—C52 1.382 (3)
C14—H14 0.9500 C51—H51 0.9500
N20—C24 1.327 (2) C52—C53 1.360 (3)
N20—N21 1.3502 (19) C52—H52 0.9500
N21—C21 1.324 (2) C53—C54 1.393 (3)
C21—C22 1.388 (3) C53—H53 0.9500
C21—H21 0.9500 C54—H54 0.9500
C22—C23 1.370 (3) N60—C64 1.318 (3)
C22—H22 0.9500 N60—N61 1.331 (3)
C23—C24 1.398 (2) N61—C61 1.316 (3)
C23—H23 0.9500 C61—C62 1.378 (4)
C24—H24 0.9500 C61—H61 0.9500
N30—C34 1.328 (2) C62—C63 1.360 (4)
N30—N31 1.341 (2) C62—H62 0.9500
N31—C31 1.331 (3) C63—C64 1.375 (4)
C31—C32 1.391 (3) C63—H63 0.9500
C31—H31 0.9500 C64—H64 0.9500
N1—Ni1—N2 179.71 (7) N31—C31—H31 118.1
N1—Ni1—N40 90.25 (6) C32—C31—H31 118.1
N2—Ni1—N40 89.64 (6) C33—C32—C31 117.2 (2)
N1—Ni1—N20 91.20 (6) C33—C32—H32 121.4
N2—Ni1—N20 88.90 (6) C31—C32—H32 121.4
N40—Ni1—N20 178.54 (6) C32—C33—C34 117.37 (19)
N1—Ni1—N10 88.37 (6) C32—C33—H33 121.3
N2—Ni1—N10 91.90 (6) C34—C33—H33 121.3
N40—Ni1—N10 87.95 (5) N30—C34—C33 123.06 (18)
N20—Ni1—N10 92.16 (5) N30—C34—H34 118.5
N1—Ni1—N30 91.25 (6) C33—C34—H34 118.5
N2—Ni1—N30 88.48 (6) C44—N40—N41 120.64 (14)
N40—Ni1—N30 92.57 (5) C44—N40—Ni1 125.54 (12)
N20—Ni1—N30 87.33 (5) N41—N40—Ni1 113.81 (10)
N10—Ni1—N30 179.36 (5) C41—N41—N40 118.32 (14)
C2—N2—Ni1 165.91 (13) N41—C41—C42 123.54 (17)
N2—C2—S2 179.46 (15) N41—C41—H41 118.2
C1—N1—Ni1 161.54 (13) C42—C41—H41 118.2
N1—C1—S1 179.63 (17) C43—C42—C41 117.98 (16)
C14—N10—N11 119.91 (16) C43—C42—H42 121.0
C14—N10—Ni1 122.41 (13) C41—C42—H42 121.0
N11—N10—Ni1 117.67 (11) C42—C43—C44 117.04 (16)
C11—N11—N10 118.70 (15) C42—C43—H43 121.5
N11—C11—C12 124.07 (19) C44—C43—H43 121.5
N11—C11—H11 118.0 N40—C44—C43 122.43 (16)
C12—C11—H11 118.0 N40—C44—H44 118.8
C13—C12—C11 116.88 (19) C43—C44—H44 118.8
C13—C12—H12 121.6 C54—N50—N51 119.27 (18)
C11—C12—H12 121.6 C51—N51—N50 118.58 (19)
C12—C13—C14 117.59 (18) N51—C51—C52 124.1 (2)
C12—C13—H13 121.2 N51—C51—H51 117.9
C14—C13—H13 121.2 C52—C51—H51 117.9
N10—C14—C13 122.82 (18) C53—C52—C51 117.5 (2)
N10—C14—H14 118.6 C53—C52—H52 121.2
C13—C14—H14 118.6 C51—C52—H52 121.2
C24—N20—N21 120.47 (13) C52—C53—C54 116.8 (2)
C24—N20—Ni1 124.29 (11) C52—C53—H53 121.6
N21—N20—Ni1 115.09 (10) C54—C53—H53 121.6
C21—N21—N20 118.35 (14) N50—C54—C53 123.7 (2)
N21—C21—C22 123.81 (17) N50—C54—H54 118.1
N21—C21—H21 118.1 C53—C54—H54 118.1
C22—C21—H21 118.1 C64—N60—N61 118.7 (2)
C23—C22—C21 117.67 (16) C61—N61—N60 119.0 (2)
C23—C22—H22 121.2 N61—C61—C62 124.4 (2)
C21—C22—H22 121.2 N61—C61—H61 117.8
C22—C23—C24 117.13 (17) C62—C61—H61 117.8
C22—C23—H23 121.4 C63—C62—C61 116.7 (2)
C24—C23—H23 121.4 C63—C62—H62 121.7
N20—C24—C23 122.52 (16) C61—C62—H62 121.7
N20—C24—H24 118.7 C62—C63—C64 116.9 (2)
C23—C24—H24 118.7 C62—C63—H63 121.6
C34—N30—N31 119.93 (16) C64—C63—H63 121.6
C34—N30—Ni1 120.60 (12) N60—C64—C63 124.4 (2)
N31—N30—Ni1 119.45 (11) N60—C64—H64 117.8
C31—N31—N30 118.68 (16) C63—C64—H64 117.8
N31—C31—C32 123.75 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5930).

References

  1. Boeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 5502–5511.
  2. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Lloret, F., Munno, G., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. 37, 135–138.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  7. Wriedt, M. & Näther, C. (2009). Z. Anorg. Allg. Chem. 635, 2459–2464.
  8. Wriedt, M. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 228–234.
  9. Yi, T., Ho-Chol, C., Gao, S. & Kitagawa, S. (2006). Eur. J. Inorg. Chem. pp. 1381–1387.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023306/bt5930sup1.cif

e-68-0m793-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023306/bt5930Isup2.hkl

e-68-0m793-Isup2.hkl (313.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES