Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):m799–m800. doi: 10.1107/S1600536812022301

(R)-2-[(Dimethyl­amino)­meth­yl]-1,1′-bis­(diphenyl­phosphinothio­yl)ferrocene dichloromethane monsolvate

Elisabeth Philippe a, Eric Manoury a, Jean-Claude Daran a,*
PMCID: PMC3379127  PMID: 22719348

Abstract

In the title compound, [Fe(C20H21NPS)(C17H14PS)]·CH2Cl2, both cyclo­penta­dienyl (Cp) rings constituting the ferrocene unit are substituted by a sulfur-protected diphenyl­phosphine. One of the Cp ligands is additionally substituted by a dimethyl­amino­methyl group causing the chirality of the mol­ecule. Surprisingly, although the synthetic procedure yielded the title compound as a racemic mixture, the reported crystal is enanti­omerically pure with the R absolute configuration. The dimethyl­amino group is exo with respect to the Cp ring. Both diphenyl­thio­phosphine groups are trans with respect to the centroid–Fe–centroid direction. Weak intra­molecular C—H⋯S and C—H⋯π inter­actions between symmetry-related mol­ecules are observed. The contribution of the disordered solvent was removed from the refinement using SQUEEZE in PLATON [Spek (2009). Acta Cryst. D65, 148–155].

Related literature  

For related 1,1′-bis­(diphenyl­thio­phosphino)ferrocene structures, see: Fang et al. (1995); Pilloni et al. (1997) and for a related dimethyl­ethyl­amino­ferrocene structure, see: Mateus et al. (2006). For the chemistry of related ferrocenyl compounds, see: Audin et al. (2010); Debono et al. (2010); Diab et al. (2008); Le Roux et al. (2007); Malacea et al. (2006a ,b ); Routaboul et al. (2005, 2007).graphic file with name e-68-0m799-scheme1.jpg

Experimental  

Crystal data  

  • [Fe(C20H21NPS)(C17H14PS)]·CH2Cl2

  • M r = 760.50

  • Orthorhombic, Inline graphic

  • a = 8.9493 (3) Å

  • b = 16.8206 (7) Å

  • c = 23.7697 (9) Å

  • V = 3578.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 180 K

  • 0.48 × 0.11 × 0.08 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.841, T max = 1.0

  • 61147 measured reflections

  • 7854 independent reflections

  • 7097 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.102

  • S = 1.09

  • 7854 reflections

  • 393 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), 3441 Friedel pairs

  • Flack parameter: 0.043 (16)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022301/im2377sup1.cif

e-68-0m799-sup1.cif (41.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022301/im2377Isup2.hkl

e-68-0m799-Isup2.hkl (384.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C612—H612⋯S6 0.95 2.87 3.367 (3) 114
C113—H113⋯CT3i 0.95 2.84 3.678 (4) 148

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Our group has extensively studied the coordination chemistry (Malacea et al., 2006a, 2006b) and the catalytic properties (Le Roux et al., 2007; Diab et al., 2008; Debono et al., 2010) of various ferrocenyl ligands which can be efficiently synthesized from racemic or enantiomerically pure 2-(diphenylthiophosphino)(hydroxymethyl)ferrocene (Routaboul et al., 2005; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Audin et al., 2010). The latter may be obtained from 2-(diphenylthiophosphino)(dimethylaminomethyl)ferrocene. This last compound can be efficiently obtained by a one-pot procedure from commercially available dimethylaminomethylferrocene (Mateus et al., 2006). During this synthesis, small amounts of 1,1'-bis(diphenylthiophosphino) 2-dimethylaminomethylferrocene can be observed in the crude materials and isolated by flash chromatography on silicagel. Single crystals suitable for X-ray diffraction analysis could be grown from a dichloromethane solution by slow diffusion of hexane.

In the title compound, both Cp rings constituting the ferrocene unit are substituted by a sulfur protected diphenylphosphine. One of the Cp ligands is additionally substituted by a dimethylaminomethyl group causing the chirality of the molecule. Surprisingly, although the synthetic procedure yielded the title compound as a racemic mixture, the reported crystal is enantiomerically pure with the R absolute configuration (Fig. 1). The dimethylamino moiety is exo with respect to the Cp ring as already observed for the related 2-(diphenylthiophophino)-dimethylaminomethylferrocene (Mateus et al., 2006). The C2—C21—N2 group is bent with respect to the Cp ring making a dihedral angle of 73.8 (3)° and the two methyl groups have rotated around the C21—N2 bond from the idealized bisecting position to minimize the interactions with the corresponding C111—C116 phenyl ring. The two diphenylthiophosphine moieties are trans with respect to the Ct1—Fe—Ct2 centroid direction (Ct1 and Ct2 being the centroids of the C1—C5 and C6—C10 Cp rings, respectively) as it was also observed in the molecular structure of related 1,1-(bisdiphenylthiophosphino)ferrocene (Fang et al.,1995; Pilloni et al., 1997). The P1—Ct1—Ct2—P6 torsion angle is 146.75 (2)°.

The two Cp rings are eclipsed with a twist angle of 0.8 (2)°. There is a weak intramolecular C—H···S interaction (Table 1). Weak intramolecular C—H···S and C—H···π interactions between symmetry related molecules are observed (Table 1).

Experimental

In a Schlenk tube, were dissolved, under argon, 13.5 g (55.6 mmol) of N,N-dimethylaminomethylferrocene in 80 ml of dry diethylether. The solution was cooled down to -78°C and 42 ml (67.1 mmol) of a 1.65M n-BuLi solution in hexane were added dropwise. The solution was then stirred 3 h at RT. After cooling back to -78°C again, 27 ml (150 mmol) of freshly distilled chlorodiphenylphosphine were added dropwise. After stirring overnight at RT, water was added slowly under argon. The aqueous phase was then extracted by three fractions of dichloromethane under argon. The organic solutions were dried with sodium sulfate. After evaporation of the solvents, the crude material was dissolved, under argon, in 400 ml of dry dichloromethane in a Schlenk tube. 10.2 g of sulfur (318 mmol) was then added and the solution was kept at reflux for 2 h. The crude material was purified by flash chromatography on silica with pentane then ether as eluent to yield two yellow fractions (first fraction: 0.45 g of 1,1'-bis(diphenylthiophosphino) 2-dimethylaminomethylferrocene (1.2%); second fraction: 23.2 g of 2- (diphenylthiophosphino)dimethylaminomethylferrocene (91%)).

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl), 0.99 Å (methylene) with Uiso(H) = 1.2Ueq(aromatic,methylene) and Uiso(H) = 1.5Ueq(methyl).

Some residual electron densities were difficult to modelize and therefore the SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There are two cavities of 246 Å3 per unit cell. PLATON estimated that each cavity contains 82 electrons which may correspond to two solvent molecules of dichloromethane as suggested by chemical analyses.

The dimethylamino moiety displays rather large ellipsoids however attempts to modelize a disordered model failed and thus these large ellipsoids reflect rather thermal motion than disorder.

Figures

Fig. 1.

Fig. 1.

; Molecular view of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Fe(C20H21NPS)(C17H14PS)]·CH2Cl2 F(000) = 1576
Mr = 760.50 Dx = 1.412 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9878 reflections
a = 8.9493 (3) Å θ = 2.4–26.6°
b = 16.8206 (7) Å µ = 0.81 mm1
c = 23.7697 (9) Å T = 180 K
V = 3578.1 (2) Å3 Needle, yellow
Z = 4 0.48 × 0.11 × 0.08 mm

Data collection

Bruker APEXII diffractometer 7854 independent reflections
Radiation source: fine-focus sealed tube 7097 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
ω and φ scans θmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→11
Tmin = 0.841, Tmax = 1.0 k = −21→20
61147 measured reflections l = −29→30

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0472P)2 + 2.2997P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
7854 reflections Δρmax = 0.63 e Å3
393 parameters Δρmin = −0.36 e Å3
0 restraints Absolute structure: Flack (1983), 3441 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.043 (16)

Special details

Experimental. NMR of 1,1'-bis(diphenylthiophosphino) 2-dimethylaminomethylferrocene 1H NMR ((p.p.m.), δ CDCl3): 7.7 (2H, m: Ph); 7.72–7.60 (6H, m: Ph); 7.55–7.40 (8H, m: Ph); 7.40–7.30 (4H, m: Ph); 4.97 (1H, br s: Cp); 4.89 (1H, br s: Cp); 4.78 (1H, br s: Cp); 4.54 (1H, br s: Cp); 4.48 (1H, br s: Cp); 4.25 (1H, br s: Cp); 3.97 (1H, br d(AB), J=10 Hz: CH2); 3.70 (1H, br s: Cp); 2.91 (1H, br d(AB), J=10 Hz: CH2); 1.88 (6H, s: CH3). 13 C NMR (δ (p.p.m.), CDCl3): 134.26 (d, JP—C=87.0 Hz: quat. Ph); 134.22 (d, JP—C=88.3 Hz: quat. Ph); 134.0 (d, JP—C=87.0 Hz: quat. Ph); 133.3 (d, JP—C=85.9 Hz: quat. Ph); 132.0 (d, JP—C=10.7 Hz: Ph); 131.9 (d, JP—C=10.5 Hz: Ph);131.7 (d, JP—C=10.8 Hz: Ph); 131.41 (s, Ph); 131.37 (d, JP—C=12.5 Hz: Ph); 131.3 (s, Ph); 131.2 (d, JP—C=2.9 Hz: Ph); 131.03 (d, JP—C=2.5 Hz: Ph); 128.4 (d, JP—C=12.5 Hz: Ph); 128.2 (d, JP—C=12.5 Hz: Ph); 128.0 (d, JP—C=12.4 Hz: Ph); 127.9 (d, JP—C=12.7 Hz: Ph); 77.9 (br s: Cp); 76.8 (d, JP—C=10.1 Hz: Cp); 76.0 (d, JP—C=12.4 Hz: Cp); 75.8 (d, JP—C=94 Hz: quat Cp); 75.6 (d, JP—C= 9.9 Hz: Cp); 75.3 (d, JP—C=12.3 Hz: Cp); 73.9 (d, JP—C=12.1 Hz: Cp); 72.5 (br d, JP—C=8 Hz: Cp); 56.0 (CH2); 44.5 (N—CH3). 31P NMR (δ (p.p.m.), CDCl3): 40.95; 40,56.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.48389 (4) 0.00564 (3) 0.606968 (17) 0.03074 (11)
P1 0.23725 (8) 0.02734 (5) 0.71861 (3) 0.02852 (17)
P6 0.73306 (8) 0.07876 (5) 0.50958 (3) 0.02409 (16)
S1 0.13593 (10) 0.12190 (5) 0.68974 (4) 0.0406 (2)
S6 0.89329 (9) 0.00330 (5) 0.52544 (3) 0.03778 (19)
N2 0.5450 (5) 0.1520 (2) 0.75679 (14) 0.0686 (11)
C1 0.4171 (3) 0.0049 (2) 0.68857 (12) 0.0325 (7)
C2 0.5410 (3) 0.0577 (2) 0.68079 (13) 0.0362 (8)
C3 0.6606 (3) 0.0106 (3) 0.66053 (13) 0.0494 (10)
H3 0.7580 0.0300 0.6525 0.059*
C4 0.6152 (4) −0.0689 (2) 0.65397 (15) 0.0462 (9)
H4 0.6740 −0.1116 0.6400 0.055*
C5 0.4652 (4) −0.0730 (2) 0.67230 (14) 0.0417 (8)
H5 0.4059 −0.1198 0.6736 0.050*
C6 0.5518 (3) 0.04440 (19) 0.52950 (12) 0.0287 (7)
C7 0.4279 (3) 0.0909 (2) 0.54986 (13) 0.0335 (7)
H7 0.4281 0.1465 0.5567 0.040*
C8 0.3061 (3) 0.0388 (2) 0.55776 (14) 0.0419 (9)
H8 0.2093 0.0541 0.5702 0.050*
C9 0.3500 (4) −0.0390 (2) 0.54446 (15) 0.0464 (9)
H9 0.2893 −0.0852 0.5468 0.056*
C10 0.5022 (4) −0.0362 (2) 0.52682 (13) 0.0400 (7)
H10 0.5607 −0.0804 0.5153 0.048*
C21 0.5416 (4) 0.1420 (2) 0.69626 (16) 0.0479 (9)
H21A 0.6301 0.1681 0.6795 0.057*
H21B 0.4511 0.1680 0.6809 0.057*
C22 0.6886 (8) 0.1248 (4) 0.7806 (3) 0.119 (3)
H22A 0.7709 0.1537 0.7626 0.178*
H22B 0.7003 0.0677 0.7738 0.178*
H22C 0.6899 0.1350 0.8212 0.178*
C23 0.5062 (9) 0.2326 (3) 0.7734 (2) 0.111 (3)
H23A 0.5025 0.2360 0.8146 0.166*
H23B 0.4082 0.2465 0.7578 0.166*
H23C 0.5816 0.2697 0.7591 0.166*
C111 0.2708 (3) 0.03238 (19) 0.79388 (12) 0.0310 (6)
C112 0.3919 (3) −0.0059 (2) 0.81862 (13) 0.0402 (7)
H112 0.4579 −0.0366 0.7961 0.048*
C113 0.4166 (4) 0.0005 (3) 0.87580 (14) 0.0468 (8)
H113 0.5002 −0.0254 0.8923 0.056*
C114 0.3207 (4) 0.0441 (2) 0.90904 (15) 0.0482 (9)
H114 0.3378 0.0483 0.9484 0.058*
C115 0.1988 (4) 0.0818 (2) 0.88471 (14) 0.0446 (8)
H115 0.1323 0.1119 0.9074 0.053*
C116 0.1741 (4) 0.0757 (2) 0.82769 (13) 0.0362 (7)
H116 0.0901 0.1015 0.8114 0.043*
C121 0.1326 (3) −0.06366 (19) 0.70677 (13) 0.0327 (7)
C122 0.0559 (4) −0.0718 (2) 0.65611 (15) 0.0382 (8)
H122 0.0545 −0.0291 0.6300 0.046*
C123 −0.0181 (4) −0.1416 (2) 0.64376 (17) 0.0473 (9)
H123 −0.0661 −0.1477 0.6084 0.057*
C124 −0.0227 (5) −0.2024 (2) 0.68224 (19) 0.0554 (10)
H124 −0.0775 −0.2494 0.6742 0.067*
C125 0.0515 (5) −0.1951 (2) 0.73201 (18) 0.0531 (10)
H125 0.0490 −0.2376 0.7583 0.064*
C126 0.1312 (4) −0.1260 (2) 0.74514 (15) 0.0437 (8)
H126 0.1836 −0.1218 0.7798 0.052*
C611 0.7596 (3) 0.17580 (17) 0.54128 (11) 0.0254 (6)
C612 0.8712 (3) 0.18721 (19) 0.58077 (12) 0.0294 (6)
H612 0.9324 0.1439 0.5920 0.035*
C613 0.8938 (3) 0.2616 (2) 0.60395 (14) 0.0384 (7)
H613 0.9703 0.2691 0.6312 0.046*
C614 0.8055 (4) 0.3256 (2) 0.58777 (13) 0.0386 (8)
H614 0.8216 0.3767 0.6037 0.046*
C615 0.6936 (4) 0.3142 (2) 0.54805 (14) 0.0362 (7)
H615 0.6327 0.3578 0.5370 0.043*
C616 0.6703 (3) 0.24041 (18) 0.52467 (12) 0.0302 (6)
H616 0.5940 0.2331 0.4974 0.036*
C621 0.7209 (3) 0.09785 (17) 0.43468 (11) 0.0251 (6)
C622 0.8041 (4) 0.1585 (2) 0.41042 (13) 0.0357 (7)
H622 0.8578 0.1947 0.4335 0.043*
C623 0.8085 (4) 0.1661 (2) 0.35233 (14) 0.0438 (9)
H623 0.8661 0.2075 0.3359 0.053*
C624 0.7316 (4) 0.1151 (2) 0.31833 (13) 0.0414 (8)
H624 0.7366 0.1206 0.2786 0.050*
C625 0.6461 (4) 0.0553 (2) 0.34214 (14) 0.0427 (8)
H625 0.5918 0.0198 0.3187 0.051*
C626 0.6398 (3) 0.0471 (2) 0.39988 (13) 0.0359 (7)
H626 0.5796 0.0065 0.4160 0.043*
CT1 0.5398 −0.0138 0.6712 0.010* 0.00
CT2 0.4276 0.0198 0.5417 0.010* 0.00
CT3 0.7251 0.1066 0.3763 0.010* 0.00

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0273 (2) 0.0402 (3) 0.0247 (2) 0.00255 (18) 0.00526 (16) 0.01199 (19)
P1 0.0269 (3) 0.0326 (4) 0.0260 (4) 0.0068 (3) 0.0028 (3) 0.0074 (3)
P6 0.0225 (3) 0.0311 (4) 0.0186 (3) 0.0000 (3) 0.0010 (3) 0.0037 (3)
S1 0.0450 (5) 0.0375 (5) 0.0393 (5) 0.0162 (4) −0.0074 (4) 0.0079 (4)
S6 0.0392 (4) 0.0435 (5) 0.0306 (4) 0.0150 (4) 0.0001 (3) 0.0075 (4)
N2 0.111 (3) 0.052 (2) 0.0427 (19) −0.009 (2) −0.021 (2) 0.0029 (16)
C1 0.0314 (14) 0.0435 (18) 0.0228 (14) 0.0099 (14) 0.0040 (11) 0.0127 (15)
C2 0.0288 (15) 0.056 (2) 0.0233 (15) −0.0050 (14) −0.0038 (12) 0.0097 (14)
C3 0.0232 (14) 0.096 (3) 0.0294 (16) 0.0046 (18) 0.0022 (12) 0.014 (2)
C4 0.0409 (19) 0.055 (2) 0.042 (2) 0.0176 (18) 0.0139 (16) 0.0223 (17)
C5 0.0449 (19) 0.0435 (19) 0.0366 (18) 0.0204 (16) 0.0156 (15) 0.0192 (15)
C6 0.0274 (14) 0.0397 (18) 0.0190 (14) −0.0062 (12) 0.0039 (11) 0.0055 (13)
C7 0.0269 (14) 0.047 (2) 0.0269 (15) 0.0016 (13) −0.0022 (12) 0.0104 (14)
C8 0.0242 (14) 0.070 (3) 0.0315 (18) −0.0044 (15) −0.0011 (13) 0.0151 (17)
C9 0.0457 (19) 0.058 (2) 0.0356 (19) −0.0232 (18) 0.0044 (15) 0.0052 (17)
C10 0.0461 (19) 0.0458 (19) 0.0281 (16) −0.0050 (16) 0.0030 (14) −0.0014 (14)
C21 0.053 (2) 0.049 (2) 0.042 (2) −0.0101 (17) −0.0031 (17) 0.0139 (17)
C22 0.142 (6) 0.097 (4) 0.117 (5) −0.001 (4) −0.085 (5) 0.003 (4)
C23 0.211 (8) 0.043 (3) 0.078 (4) −0.018 (4) −0.048 (5) −0.009 (2)
C111 0.0295 (14) 0.0384 (17) 0.0251 (14) 0.0022 (13) 0.0053 (11) 0.0100 (12)
C112 0.0368 (15) 0.056 (2) 0.0275 (15) 0.0090 (17) 0.0019 (12) 0.0102 (16)
C113 0.0436 (17) 0.063 (2) 0.0338 (17) 0.0012 (18) −0.0049 (14) 0.0122 (18)
C114 0.053 (2) 0.065 (2) 0.0275 (17) −0.0119 (19) 0.0057 (15) 0.0090 (16)
C115 0.0446 (18) 0.056 (2) 0.0331 (18) 0.0014 (16) 0.0114 (15) −0.0032 (16)
C116 0.0375 (16) 0.0403 (18) 0.0307 (16) 0.0070 (14) 0.0034 (13) 0.0024 (14)
C121 0.0307 (15) 0.0344 (17) 0.0331 (16) 0.0113 (13) 0.0077 (12) 0.0060 (13)
C122 0.0312 (16) 0.043 (2) 0.0400 (19) 0.0041 (14) −0.0006 (13) 0.0139 (16)
C123 0.043 (2) 0.046 (2) 0.053 (2) 0.0045 (17) −0.0012 (17) −0.0062 (17)
C124 0.056 (2) 0.042 (2) 0.068 (3) −0.0078 (18) 0.016 (2) −0.0063 (19)
C125 0.072 (3) 0.032 (2) 0.055 (2) 0.0017 (18) 0.024 (2) 0.0088 (17)
C126 0.058 (2) 0.0350 (18) 0.0384 (19) 0.0098 (17) 0.0115 (16) 0.0066 (15)
C611 0.0224 (13) 0.0321 (15) 0.0216 (13) −0.0020 (12) 0.0030 (11) 0.0028 (11)
C612 0.0263 (14) 0.0411 (18) 0.0207 (14) −0.0001 (13) 0.0015 (11) 0.0030 (12)
C613 0.0309 (15) 0.058 (2) 0.0269 (16) −0.0094 (15) −0.0011 (13) −0.0027 (15)
C614 0.0397 (18) 0.045 (2) 0.0312 (17) −0.0076 (15) 0.0041 (13) −0.0086 (15)
C615 0.0323 (16) 0.0357 (18) 0.0404 (18) −0.0003 (13) 0.0070 (13) 0.0062 (15)
C616 0.0286 (14) 0.0381 (17) 0.0239 (14) 0.0016 (13) −0.0012 (12) 0.0007 (13)
C621 0.0233 (13) 0.0324 (16) 0.0197 (13) 0.0063 (11) 0.0023 (10) 0.0007 (11)
C622 0.0410 (18) 0.0376 (18) 0.0285 (16) −0.0057 (14) 0.0035 (13) 0.0043 (14)
C623 0.050 (2) 0.050 (2) 0.0310 (17) 0.0018 (17) 0.0107 (15) 0.0144 (16)
C624 0.0448 (18) 0.056 (2) 0.0234 (15) 0.0127 (17) 0.0026 (14) 0.0063 (15)
C625 0.0418 (19) 0.059 (2) 0.0277 (17) −0.0059 (16) −0.0037 (14) −0.0033 (15)
C626 0.0334 (15) 0.0462 (19) 0.0281 (16) −0.0073 (14) 0.0018 (13) −0.0036 (14)

Geometric parameters (Å, º)

Fe1—CT1 1.6401 (4) C23—H23B 0.9800
Fe1—CT2 1.6488 (4) C23—H23C 0.9800
Fe1—C2 2.027 (3) C111—C116 1.388 (4)
Fe1—C1 2.030 (3) C111—C112 1.391 (4)
Fe1—C3 2.032 (3) C112—C113 1.381 (4)
Fe1—C7 2.037 (3) C112—H112 0.9500
Fe1—C10 2.038 (3) C113—C114 1.378 (5)
Fe1—C6 2.046 (3) C113—H113 0.9500
Fe1—C5 2.046 (3) C114—C115 1.388 (5)
Fe1—C4 2.050 (3) C114—H114 0.9500
Fe1—C9 2.051 (4) C115—C116 1.377 (5)
Fe1—C8 2.052 (3) C115—H115 0.9500
P1—C1 1.800 (3) C116—H116 0.9500
P1—C111 1.816 (3) C121—C126 1.390 (5)
P1—C121 1.816 (3) C121—C122 1.393 (5)
P1—S1 1.9551 (11) C122—C123 1.379 (5)
P6—C6 1.786 (3) C122—H122 0.9500
P6—C621 1.812 (3) C123—C124 1.373 (6)
P6—C611 1.813 (3) C123—H123 0.9500
P6—S6 1.9519 (11) C124—C125 1.362 (6)
N2—C21 1.449 (5) C124—H124 0.9500
N2—C23 1.454 (6) C125—C126 1.399 (6)
N2—C22 1.477 (7) C125—H125 0.9500
C1—C2 1.432 (4) C126—H126 0.9500
C1—C5 1.433 (5) C611—C612 1.384 (4)
C2—C3 1.417 (5) C611—C616 1.406 (4)
C2—C21 1.464 (5) C612—C613 1.382 (5)
C3—C4 1.406 (6) C612—H612 0.9500
C3—H3 0.9500 C613—C614 1.389 (5)
C4—C5 1.413 (5) C613—H613 0.9500
C4—H4 0.9500 C614—C615 1.389 (5)
C5—H5 0.9500 C614—H614 0.9500
C6—C10 1.428 (5) C615—C616 1.377 (5)
C6—C7 1.440 (4) C615—H615 0.9500
C7—C8 1.411 (5) C616—H616 0.9500
C7—H7 0.9500 C621—C622 1.388 (4)
C8—C9 1.403 (6) C621—C626 1.393 (4)
C8—H8 0.9500 C622—C623 1.387 (5)
C9—C10 1.426 (5) C622—H622 0.9500
C9—H9 0.9500 C623—C624 1.364 (5)
C10—H10 0.9500 C623—H623 0.9500
C21—H21A 0.9900 C624—C625 1.385 (5)
C21—H21B 0.9900 C624—H624 0.9500
C22—H22A 0.9800 C625—C626 1.381 (5)
C22—H22B 0.9800 C625—H625 0.9500
C22—H22C 0.9800 C626—H626 0.9500
C23—H23A 0.9800
CT1—Fe1—CT2 176.82 (3) P6—C6—Fe1 127.72 (16)
CT1—Fe1—C2 37.12 (10) C8—C7—C6 107.6 (3)
CT2—Fe1—C2 146.06 (10) C8—C7—Fe1 70.39 (18)
CT1—Fe1—C1 36.75 (8) C6—C7—Fe1 69.67 (17)
CT2—Fe1—C1 144.12 (8) C8—C7—H7 126.2
C2—Fe1—C1 41.36 (13) C6—C7—H7 126.2
CT1—Fe1—C3 35.63 (9) Fe1—C7—H7 125.3
CT2—Fe1—C3 145.24 (9) C9—C8—C7 109.4 (3)
C2—Fe1—C3 40.86 (14) C9—C8—Fe1 70.0 (2)
C1—Fe1—C3 68.34 (12) C7—C8—Fe1 69.24 (17)
CT1—Fe1—C7 146.69 (10) C9—C8—H8 125.3
CT2—Fe1—C7 36.50 (10) C7—C8—H8 125.3
C2—Fe1—C7 109.57 (14) Fe1—C8—H8 127.1
C1—Fe1—C7 124.64 (13) C8—C9—C10 107.6 (3)
C3—Fe1—C7 125.46 (16) C8—C9—Fe1 70.0 (2)
CT1—Fe1—C10 141.04 (11) C10—C9—Fe1 69.07 (19)
CT2—Fe1—C10 36.33 (10) C8—C9—H9 126.2
C2—Fe1—C10 159.80 (13) C10—C9—H9 126.2
C1—Fe1—C10 156.23 (14) Fe1—C9—H9 126.3
C3—Fe1—C10 122.50 (14) C9—C10—C6 108.4 (3)
C7—Fe1—C10 68.88 (14) C9—C10—Fe1 70.1 (2)
CT1—Fe1—C6 144.19 (8) C6—C10—Fe1 69.84 (19)
CT2—Fe1—C6 36.65 (8) C9—C10—H10 125.8
C2—Fe1—C6 124.52 (12) C6—C10—H10 125.8
C1—Fe1—C6 161.71 (14) Fe1—C10—H10 125.8
C3—Fe1—C6 108.63 (12) N2—C21—C2 111.3 (3)
C7—Fe1—C6 41.32 (12) N2—C21—H21A 109.4
C10—Fe1—C6 40.94 (13) C2—C21—H21A 109.4
CT1—Fe1—C5 35.88 (12) N2—C21—H21B 109.4
CT2—Fe1—C5 141.48 (12) C2—C21—H21B 109.4
C2—Fe1—C5 69.07 (15) H21A—C21—H21B 108.0
C1—Fe1—C5 41.15 (14) N2—C22—H22A 109.5
C3—Fe1—C5 67.34 (16) N2—C22—H22B 109.5
C7—Fe1—C5 160.11 (13) H22A—C22—H22B 109.5
C10—Fe1—C5 119.54 (15) N2—C22—H22C 109.5
C6—Fe1—C5 155.96 (13) H22A—C22—H22C 109.5
CT1—Fe1—C4 36.47 (11) H22B—C22—H22C 109.5
CT2—Fe1—C4 140.93 (11) N2—C23—H23A 109.5
C2—Fe1—C4 69.38 (15) N2—C23—H23B 109.5
C1—Fe1—C4 69.18 (13) H23A—C23—H23B 109.5
C3—Fe1—C4 40.30 (17) N2—C23—H23C 109.5
C7—Fe1—C4 159.20 (13) H23A—C23—H23C 109.5
C10—Fe1—C4 104.61 (15) H23B—C23—H23C 109.5
C6—Fe1—C4 121.01 (13) C116—C111—C112 118.9 (3)
C5—Fe1—C4 40.36 (13) C116—C111—P1 119.5 (2)
CT1—Fe1—C9 141.26 (10) C112—C111—P1 121.6 (2)
CT2—Fe1—C9 36.16 (10) C113—C112—C111 120.3 (3)
C2—Fe1—C9 158.85 (14) C113—C112—H112 119.8
C1—Fe1—C9 121.19 (13) C111—C112—H112 119.8
C3—Fe1—C9 157.44 (17) C114—C113—C112 120.4 (3)
C7—Fe1—C9 68.37 (15) C114—C113—H113 119.8
C10—Fe1—C9 40.83 (14) C112—C113—H113 119.8
C6—Fe1—C9 68.80 (12) C113—C114—C115 119.6 (3)
C5—Fe1—C9 105.38 (16) C113—C114—H114 120.2
C4—Fe1—C9 120.38 (17) C115—C114—H114 120.2
CT1—Fe1—C8 145.23 (9) C116—C115—C114 120.2 (3)
CT2—Fe1—C8 35.66 (9) C116—C115—H115 119.9
C2—Fe1—C8 124.85 (15) C114—C115—H115 119.9
C1—Fe1—C8 108.53 (12) C115—C116—C111 120.6 (3)
C3—Fe1—C8 161.71 (18) C115—C116—H116 119.7
C7—Fe1—C8 40.37 (13) C111—C116—H116 119.7
C10—Fe1—C8 67.88 (15) C126—C121—C122 119.2 (3)
C6—Fe1—C8 68.33 (12) C126—C121—P1 122.6 (3)
C5—Fe1—C8 123.01 (14) C122—C121—P1 118.1 (2)
C4—Fe1—C8 157.15 (16) C123—C122—C121 120.3 (3)
C9—Fe1—C8 39.98 (15) C123—C122—H122 119.9
C1—P1—C111 104.65 (13) C121—C122—H122 119.9
C1—P1—C121 102.87 (15) C124—C123—C122 120.4 (4)
C111—P1—C121 106.09 (14) C124—C123—H123 119.8
C1—P1—S1 116.46 (11) C122—C123—H123 119.8
C111—P1—S1 112.61 (11) C125—C124—C123 119.8 (4)
C121—P1—S1 113.08 (10) C125—C124—H124 120.1
C6—P6—C621 105.26 (14) C123—C124—H124 120.1
C6—P6—C611 107.47 (14) C124—C125—C126 121.2 (4)
C621—P6—C611 104.87 (13) C124—C125—H125 119.4
C6—P6—S6 113.92 (11) C126—C125—H125 119.4
C621—P6—S6 110.44 (9) C121—C126—C125 119.0 (4)
C611—P6—S6 114.13 (10) C121—C126—H126 120.5
C21—N2—C23 112.0 (4) C125—C126—H126 120.5
C21—N2—C22 111.3 (5) C612—C611—C616 119.6 (3)
C23—N2—C22 113.1 (5) C612—C611—P6 120.1 (2)
C2—C1—C5 107.4 (3) C616—C611—P6 120.3 (2)
C2—C1—P1 127.8 (3) C613—C612—C611 120.1 (3)
C5—C1—P1 124.6 (3) C613—C612—H612 120.0
C2—C1—Fe1 69.20 (17) C611—C612—H612 120.0
C5—C1—Fe1 70.05 (17) C612—C613—C614 120.5 (3)
P1—C1—Fe1 129.88 (15) C612—C613—H613 119.7
C3—C2—C1 106.4 (3) C614—C613—H613 119.7
C3—C2—C21 128.6 (3) C613—C614—C615 119.5 (3)
C1—C2—C21 124.8 (3) C613—C614—H614 120.3
C3—C2—Fe1 69.78 (19) C615—C614—H614 120.3
C1—C2—Fe1 69.44 (17) C616—C615—C614 120.5 (3)
C21—C2—Fe1 129.5 (2) C616—C615—H615 119.8
C4—C3—C2 110.6 (3) C614—C615—H615 119.8
C4—C3—Fe1 70.5 (2) C615—C616—C611 119.9 (3)
C2—C3—Fe1 69.36 (17) C615—C616—H616 120.1
C4—C3—H3 124.7 C611—C616—H616 120.1
C2—C3—H3 124.7 C622—C621—C626 118.9 (3)
Fe1—C3—H3 127.0 C622—C621—P6 120.4 (2)
C3—C4—C5 106.6 (3) C626—C621—P6 120.4 (2)
C3—C4—Fe1 69.17 (19) C623—C622—C621 119.7 (3)
C5—C4—Fe1 69.69 (19) C623—C622—H622 120.1
C3—C4—H4 126.7 C621—C622—H622 120.1
C5—C4—H4 126.7 C624—C623—C622 121.2 (3)
Fe1—C4—H4 126.0 C624—C623—H623 119.4
C4—C5—C1 108.9 (3) C622—C623—H623 119.4
C4—C5—Fe1 69.95 (19) C623—C624—C625 119.6 (3)
C1—C5—Fe1 68.80 (17) C623—C624—H624 120.2
C4—C5—H5 125.5 C625—C624—H624 120.2
C1—C5—H5 125.5 C626—C625—C624 120.1 (3)
Fe1—C5—H5 127.3 C626—C625—H625 120.0
C10—C6—C7 106.9 (3) C624—C625—H625 120.0
C10—C6—P6 125.3 (2) C625—C626—C621 120.5 (3)
C7—C6—P6 127.8 (2) C625—C626—H626 119.7
C10—C6—Fe1 69.22 (18) C621—C626—H626 119.7
C7—C6—Fe1 69.01 (17)
C1—CT1—CT2—C8 0.3 (3) C5—CT1—CT2—C9 1.8 (2)
C2—CT1—CT2—C7 0.1 (2) C1—C2—C21—N2 71.2 (4)
C3—CT1—CT2—C6 0.6 (3) C3—C2—C21—N2 −102.8 (4)
C4—CT1—CT2—C10 1.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C612—H612···S6 0.95 2.87 3.367 (3) 114
C113—H113···CT3i 0.95 2.84 3.678 (4) 148

Symmetry code: (i) −x+3/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2377).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chim. 13, 890–899. [DOI] [PMC free article] [PubMed]
  3. Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Debono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879–1882.
  6. Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189.
  7. Fang, Z.-G., Hor, T. S. A., Wen, Y.-S., Liu, L.-K. & Mak, T. C. W. (1995). Polyhedron, 14, 2403–2409.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  11. Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064–1073.
  12. Malacea, R., Daran, J.-C., Duckett, S. B., Dunne, J. P., Manoury, E., Poli, R. & Withwood, A. C. (2006a). Dalton Trans. pp. 3350–3359. [DOI] [PubMed]
  13. Malacea, R., Manoury, E., Routaboul, L., Daran, J.-C., Poli, R., Dunne, J. P., Withwood, A. C., Godard, C. & Duckett, S. B. (2006b). Eur. J. Inorg. Chem. pp. 1803–1816.
  14. Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.
  15. Pilloni, G., Longato, B., Bandoli, G. & Corain, B. (1997). J. Chem. Soc. Dalton Trans. pp. 819–824.
  16. Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690.
  17. Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022301/im2377sup1.cif

e-68-0m799-sup1.cif (41.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022301/im2377Isup2.hkl

e-68-0m799-Isup2.hkl (384.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES