Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):m806. doi: 10.1107/S1600536812023203

Tris(3-chloro­pentane-2,4-dionato-κ2 O,O′)aluminium

Franc Perdih a,b,*
PMCID: PMC3379131  PMID: 22719352

Abstract

In the title compound, [Al(C5H6ClO2)3], the AlIII cation is situated on a twofold rotation axis and is coordinated by six O atoms from three 3-chloro­pentane-2,4-dionate ligands in an octa­hedral environment. Al—O bond lengths are in the range 1.8741 (14)–1.8772 (14) Å. In the crystal, mol­ecules are linked via C—H⋯Cl contacts.

Related literature  

For applications of metal complexes with β-diketonate ligands, see: Bray et al. (2007); Garibay et al. (2009); Lichtenberger et al. (2010); Perdih (2011); Vreshch et al. (2004); Wu & Wang (2009). For related structures, see: Hon & Pfluger (1973); Perdih (2012).graphic file with name e-68-0m806-scheme1.jpg

Experimental  

Crystal data  

  • [Al(C5H6ClO2)3]

  • M r = 427.62

  • Monoclinic, Inline graphic

  • a = 12.8790 (3) Å

  • b = 9.9086 (2) Å

  • c = 15.5311 (4) Å

  • β = 106.368 (2)°

  • V = 1901.64 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.33 × 0.25 × 0.08 mm

Data collection  

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.838, T max = 0.957

  • 3916 measured reflections

  • 2156 independent reflections

  • 1759 reflections with I > 2σ(I)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.125

  • S = 1.05

  • 2156 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023203/im2374sup1.cif

e-68-0m806-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023203/im2374Isup2.hkl

e-68-0m806-Isup2.hkl (103.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1i 0.96 2.94 3.796 (2) 149

Symmetry code: (i) Inline graphic.

Acknowledgments

The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 and X–2000.

supplementary crystallographic information

Comment

β-Diketonates have been proven to be versatile ligands for various metal ions. They can be easily derivatized, thus modifying the electronic and steric nature of these ligands to design suitable structure/function relationships (Bray et al., 2007; Garibay et al., 2009; Perdih, 2011). β-Diketonate compounds of aluminium have received great attention due to the promise of the construction of cages (Vreshch et al., 2004; Wu & Wang, 2009). Besides that, aluminium β-diketonates and malonates can be good precursors in metal-organic chemical vapour deposition (MOCVD) (Bray et al., 2007; Garibay et al., 2009; Lichtenberger et al., 2010).

In the title molecule (Fig. 1), the aluminium(III) cation is situated on a twofold axis, and is surrounded by six O atoms from three 3-chloropentane-2,4-dionate ligands in a octahedral environment. The geometry around aluminium is close to the orthogonallity as can be seen from the angles. The Al—O bond lengths are in the range 1.8741 (14)–1.8772 (14) Å and are similar as for example in Al(acac)3 (Hon & Pfluger, 1973). The displacement of the metal atom is best described by a bending of a chelate ligand about the "bite" atoms. The angles between the O—Al—O and the ligand chelate mean planes are 0.38° and 1.72°. For comparison these values are 0.78° and 12.68° in the isostructural iron(III) compound (Perdih, 2012). A 1-D framework is achieved due to intermolecular C6–H6A···Cl1 (–x + 1/2, –y + 1/2, –z) contacts (Fig. 2).

Experimental

To a clear solution of Al2(SO4)3.18H2O (1 mmol, 0.67 g) in water (15 ml) a solution of 3-chloropentane-2,4-dione (6 mmol, 0.81 g) in methanol (5 ml) was added while stirring. Afterwards 1 M NaOH (6 ml) was slowly added and the resulting solution was stirred at 70°C for 15 minutes. After cooling to room temperature the light pink product was filtrated, washed with water (20 ml), and subsequently air-dried. Yield: 0.60 g, 70%. Crystals suitable for X-ray analysis were obtained by recrystallization from ethanol.

Refinement

All H atoms were initially located in a difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title complex showing displacement ellipsoids at the 30% probability level. Symmetry code: i = –x + 1, y, –z + 1/2.

Fig. 2.

Fig. 2.

1D infinte chain with dashed lines indicating intermolecular C6—H6A···Cl1 hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry code: ii = –x + 1/2, –y + 1/2, –z.

Crystal data

[Al(C5H6ClO2)3] F(000) = 880
Mr = 427.62 Dx = 1.494 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2269 reflections
a = 12.8790 (3) Å θ = 2.6–27.5°
b = 9.9086 (2) Å µ = 0.56 mm1
c = 15.5311 (4) Å T = 293 K
β = 106.368 (2)° Plate, pink
V = 1901.64 (8) Å3 0.33 × 0.25 × 0.08 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer 2156 independent reflections
Graphite monochromator 1759 reflections with I > 2σ(I)
Detector resolution: 0.055 pixels mm-1 Rint = 0.014
ω scans θmax = 27.5°, θmin = 5.6°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) h = −16→16
Tmin = 0.838, Tmax = 0.957 k = −10→12
3916 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0632P)2 + 1.1678P] where P = (Fo2 + 2Fc2)/3
2156 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Experimental. 211 frames in 5 sets of ω scans. Rotation/frame = 2.0 °. Crystal-detector distance = 25.00 mm. Measuring time = 55 s/°.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Al1 0.5 0.15245 (8) 0.25 0.0454 (2)
Cl1 0.36200 (7) 0.39260 (8) −0.04272 (5) 0.0995 (3)
Cl2 0.5 −0.35153 (8) 0.25 0.0799 (3)
O1 0.39394 (11) 0.28432 (14) 0.20496 (10) 0.0575 (4)
O2 0.53620 (11) 0.15368 (15) 0.14118 (9) 0.0565 (4)
O3 0.39461 (10) 0.01885 (13) 0.20911 (9) 0.0527 (3)
C1 0.2712 (2) 0.4373 (3) 0.1141 (2) 0.0824 (8)
H1A 0.2095 0.4025 0.0694 0.124*
H1B 0.292 0.5223 0.0945 0.124*
H1C 0.2532 0.4496 0.1695 0.124*
C2 0.36336 (15) 0.33939 (18) 0.12819 (15) 0.0558 (5)
C3 0.41130 (17) 0.3110 (2) 0.06059 (14) 0.0587 (5)
C4 0.49653 (15) 0.2202 (2) 0.06969 (12) 0.0529 (4)
C5 0.5460 (2) 0.1956 (3) −0.00518 (15) 0.0756 (7)
H5A 0.6094 0.1406 0.016 0.113*
H5B 0.5656 0.2803 −0.0262 0.113*
H5C 0.4947 0.1502 −0.0534 0.113*
C6 0.29806 (17) −0.1843 (2) 0.17442 (17) 0.0671 (6)
H6A 0.2393 −0.1214 0.156 0.101*
H6B 0.2852 −0.2439 0.2191 0.101*
H6C 0.3034 −0.2359 0.1235 0.101*
C7 0.40167 (15) −0.10871 (18) 0.21301 (11) 0.0468 (4)
C8 0.5 −0.1744 (3) 0.25 0.0493 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Al1 0.0412 (4) 0.0466 (4) 0.0457 (4) 0 0.0078 (3) 0
Cl1 0.1147 (6) 0.0930 (5) 0.0719 (4) 0.0188 (4) −0.0043 (4) 0.0304 (3)
Cl2 0.0779 (6) 0.0479 (4) 0.0966 (6) 0 −0.0039 (4) 0
O1 0.0517 (7) 0.0531 (8) 0.0671 (8) 0.0097 (6) 0.0155 (6) 0.0005 (6)
O2 0.0512 (7) 0.0686 (8) 0.0482 (7) 0.0139 (6) 0.0116 (5) 0.0076 (6)
O3 0.0422 (6) 0.0522 (7) 0.0565 (7) 0.0005 (5) 0.0021 (5) −0.0059 (6)
C1 0.0621 (13) 0.0577 (12) 0.114 (2) 0.0167 (11) 0.0029 (13) −0.0025 (13)
C2 0.0430 (9) 0.0406 (9) 0.0739 (13) −0.0008 (7) 0.0002 (8) −0.0001 (8)
C3 0.0546 (11) 0.0536 (10) 0.0573 (11) −0.0005 (9) −0.0015 (8) 0.0105 (9)
C4 0.0461 (9) 0.0589 (10) 0.0483 (9) −0.0071 (8) 0.0043 (7) 0.0034 (8)
C5 0.0700 (14) 0.1046 (19) 0.0528 (11) 0.0003 (14) 0.0182 (10) 0.0051 (12)
C6 0.0496 (11) 0.0674 (13) 0.0775 (14) −0.0105 (10) 0.0066 (10) −0.0102 (11)
C7 0.0457 (9) 0.0526 (10) 0.0400 (8) −0.0046 (7) 0.0088 (7) −0.0045 (7)
C8 0.0512 (14) 0.0484 (13) 0.0443 (12) 0 0.0072 (10) 0

Geometric parameters (Å, º)

Al1—O3 1.8741 (14) C1—H1C 0.96
Al1—O3i 1.8741 (14) C2—C3 1.389 (3)
Al1—O2i 1.8756 (13) C3—C4 1.395 (3)
Al1—O2 1.8756 (13) C4—C5 1.495 (3)
Al1—O1i 1.8772 (14) C5—H5A 0.96
Al1—O1 1.8772 (14) C5—H5B 0.96
Cl1—C3 1.748 (2) C5—H5C 0.96
Cl2—C8 1.755 (3) C6—C7 1.500 (3)
O1—C2 1.269 (3) C6—H6A 0.96
O2—C4 1.268 (2) C6—H6B 0.96
O3—C7 1.267 (2) C6—H6C 0.96
C1—C2 1.500 (3) C7—C8 1.396 (2)
C1—H1A 0.96 C8—C7i 1.396 (2)
C1—H1B 0.96
O3—Al1—O3i 90.12 (8) C3—C2—C1 121.5 (2)
O3—Al1—O2i 88.26 (6) C2—C3—C4 123.97 (18)
O3i—Al1—O2i 92.26 (6) C2—C3—Cl1 118.44 (16)
O3—Al1—O2 92.26 (6) C4—C3—Cl1 117.59 (17)
O3i—Al1—O2 88.26 (6) O2—C4—C3 122.35 (18)
O2i—Al1—O2 179.26 (10) O2—C4—C5 116.20 (19)
O3—Al1—O1i 178.02 (6) C3—C4—C5 121.44 (19)
O3i—Al1—O1i 89.08 (6) C4—C5—H5A 109.5
O2i—Al1—O1i 89.96 (6) C4—C5—H5B 109.5
O2—Al1—O1i 89.53 (7) H5A—C5—H5B 109.5
O3—Al1—O1 89.08 (6) C4—C5—H5C 109.5
O3i—Al1—O1 178.02 (6) H5A—C5—H5C 109.5
O2i—Al1—O1 89.53 (7) H5B—C5—H5C 109.5
O2—Al1—O1 89.96 (6) C7—C6—H6A 109.5
O1i—Al1—O1 91.78 (9) C7—C6—H6B 109.5
C2—O1—Al1 130.55 (13) H6A—C6—H6B 109.5
C4—O2—Al1 130.63 (13) C7—C6—H6C 109.5
C7—O3—Al1 130.76 (12) H6A—C6—H6C 109.5
C2—C1—H1A 109.5 H6B—C6—H6C 109.5
C2—C1—H1B 109.5 O3—C7—C8 121.98 (17)
H1A—C1—H1B 109.5 O3—C7—C6 115.78 (17)
C2—C1—H1C 109.5 C8—C7—C6 122.24 (19)
H1A—C1—H1C 109.5 C7i—C8—C7 124.4 (2)
H1B—C1—H1C 109.5 C7i—C8—Cl2 117.82 (12)
O1—C2—C3 122.47 (17) C7—C8—Cl2 117.82 (12)
O1—C2—C1 116.0 (2)
O3—Al1—O1—C2 −89.43 (17) C1—C2—C3—C4 −179.5 (2)
O2i—Al1—O1—C2 −177.70 (17) O1—C2—C3—Cl1 179.76 (15)
O2—Al1—O1—C2 2.83 (18) C1—C2—C3—Cl1 0.1 (3)
O1i—Al1—O1—C2 92.36 (17) Al1—O2—C4—C3 −0.2 (3)
O3—Al1—O2—C4 87.74 (18) Al1—O2—C4—C5 179.99 (15)
O3i—Al1—O2—C4 177.79 (18) C2—C3—C4—O2 1.3 (3)
O1i—Al1—O2—C4 −93.12 (18) Cl1—C3—C4—O2 −178.31 (15)
O1—Al1—O2—C4 −1.34 (18) C2—C3—C4—C5 −179.0 (2)
O3i—Al1—O3—C7 1.05 (13) Cl1—C3—C4—C5 1.4 (3)
O2i—Al1—O3—C7 −91.21 (17) Al1—O3—C7—C8 −2.0 (3)
O2—Al1—O3—C7 89.32 (16) Al1—O3—C7—C6 178.65 (13)
O1—Al1—O3—C7 179.24 (16) O3—C7—C8—C7i 1.01 (12)
Al1—O1—C2—C3 −2.7 (3) C6—C7—C8—C7i −179.72 (19)
Al1—O1—C2—C1 176.98 (15) O3—C7—C8—Cl2 −178.99 (12)
O1—C2—C3—C4 0.2 (3) C6—C7—C8—Cl2 0.28 (19)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···Cl1ii 0.96 2.94 3.796 (2) 149

Symmetry code: (ii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2374).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1–37.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Garibay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335–378.
  6. Hon, P. K. & Pfluger, C. E. (1973). J. Coord. Chem. 3, 67–76.
  7. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Lichtenberger, R., Baumann, S. O., Bendova, M., Puchberger, M. & Schubert, U. (2010). Monatsh. Chem. 141, 717–727. [DOI] [PMC free article] [PubMed]
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Perdih, F. (2011). Acta Cryst. E67, m1697. [DOI] [PMC free article] [PubMed]
  11. Perdih, F. (2012). Acta Cryst. E68, m807. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Vreshch, V. D., Lysenko, A. B., Chernega, A. N., Howard, J. A. K., Krautscheid, H., Sieler, J. & Domasevitch, K. V. (2004). Dalton Trans. pp. 2899–2903. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Wu, H.-B. & Wang, Q.-M. (2009). Angew. Chem. Int. Ed. 48, 7343–7345.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023203/im2374sup1.cif

e-68-0m806-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023203/im2374Isup2.hkl

e-68-0m806-Isup2.hkl (103.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES