Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):m807. doi: 10.1107/S1600536812023215

Tris(3-chloro­pentane-2,4-dionato-κ2 O,O′)iron(III)

Franc Perdih a,b,*
PMCID: PMC3379132  PMID: 22719353

Abstract

In the title compound, [Fe(C5H6ClO2)3], the FeIII cation is situated on a twofold rotation axis and is coordinated by six O atoms from three 3-chloro­pentane-2,4-dionate ligands in a slightly distorted octa­hedral environment. Fe—O bond lengths are in the range 1.9818 (18)–1.9957 (18) Å. The trans O—Fe—O angles are 169.06 (13) and 171.54 (8)°, whereas the corresponding cis angles are in the range 84.81 (10)–100.68 (12)°. In the crystal, mol­ecules are linked via C—H⋯Cl inter­actions.

Related literature  

For applications of metal complexes with β-diketonate ligands, see: Bray et al. (2007); Garibay et al. (2009); Perdih (2011); Schröder et al. (2011). For related structures, see: Iball & Morgan (1967); Perdih (2012); Pfluger & Haradem (1983).graphic file with name e-68-0m807-scheme1.jpg

Experimental  

Crystal data  

  • [Fe(C5H6ClO2)3]

  • M r = 456.49

  • Monoclinic, Inline graphic

  • a = 15.7745 (4) Å

  • b = 9.5424 (2) Å

  • c = 12.9833 (3) Å

  • β = 100.610 (1)°

  • V = 1920.92 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.13 mm

Data collection  

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.749, T max = 0.857

  • 4155 measured reflections

  • 2155 independent reflections

  • 1927 reflections with I > 2σ(I)

  • R int = 0.012

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.127

  • S = 1.07

  • 2155 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023215/im2375sup1.cif

e-68-0m807-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023215/im2375Isup2.hkl

e-68-0m807-Isup2.hkl (103.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1i 0.96 2.78 3.642 (3) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 and X–2000.

supplementary crystallographic information

Comment

β-Diketonates have been proven to be versatile ligands for various metal ions. They can be easily derivatized, thus modifying the electronic and steric nature of these ligands to design suitable structure/function relationships (Bray et al., 2007; Garibay et al., 2009; Perdih (2011). Metal-organic frameworks are considered as promising materials for many applications mostly due to interesting porosity properties. Besides the potential applications as gas storage other applications such as molecular sensing, ion exchange, catalysis, optics and magnetism have received considerable attention (Bray et al., 2007; Garibay et al., 2009). Particularly interesting is the metal-ligand coordination with applications in organic synthesis, where iron β-diketonate compounds showed great applicability. Reasons for this are the natural abundance of this metal and also it's biocompatibility, both of which are essential for the development of sustainable chemical catalysis (Schröder et al., 2011).

In the title molecule (Fig. 1), the iron(III) cation is situated on a twofold axis, and is surrounded by six O atoms from three 3-chloropentane-2,4-dionate ligands in a slightly distorted octahedral environment. Fe—O bond lengths are in the range of 1.9818 (18)–1.9957 (18) Å, trans O—Fe—O angles are 169.06 (13)° and 171.54 (8)°, and cis angles are in the range of 84.81 (10)°–100.68 (12)°. These bond lengths are similar as for example in Fe(acac)3 (Iball & Morgan, 1967). The title compound is isostructural with the corresponding aluminium(III) compound (Perdih, 2012). The displacement of the metal atom is best described by a bending of a chelate ligand about the "bite" atoms. The angles between the O—Fe—O and the ligand chelate mean planes are 0.78° and 12.68°. For comparison these values are 1.40°, 10.13° and 11.98° in Fe(hfac)3 (hfac = hexafluoroacetylacetonate) (Pfluger & Haradem, 1983) and 0.05°, 3.24° and 10.60° in Fe(acac)3 (Ibell & Morgan, 1967). A 1-D framework is achieved due to weak intermolecular C6–H6A···Cl1 (–x + 1/2, –y + 1/2, –z + 1) interactions where one 3-chloropentane-2,4-dionate ligand acts as a hydrogen-bond donors and two ligands are hydrogen-bond acceptors (Fig. 2).

Experimental

To a clear solution of FeCl3. H2O (2 mmol, 0.54 g) in water (15 ml) a solution of 3-chloropentane-2,4-dione (6 mmol, 0.81 g) in methanol (5 ml) was added while stirring. Afterwards 1 M NaOH (6 ml) was slowly added and the resulting solution was stirred at 70°C for 15 minutes. After cooling to room temperature the deep red product was filtrated, washed with water (20 ml), and subsequently air-dried. Yield: 0.65 g, 71%. Crystals suitable for X-ray analysis were obtained by recrystallization from ethanol.

Refinement

All H atoms were initially located in a difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(C). To improve the refinement results, two reflections with too high value of δ(F2)/e.s.d. and with Fo2 < Fc2 were deleted from the refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title complex showing displacement ellipsoids at the 30% probability level. Symmetry code: i = –x + 1, y, –z + 3/2.

Fig. 2.

Fig. 2.

1D infinte chain with dashed lines indicating intermolecular C6—H6A···Cl1 hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry code: ii = –x + 1/2, –y + 1/2, –z + 1.

Crystal data

[Fe(C5H6ClO2)3] F(000) = 932
Mr = 456.49 Dx = 1.578 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2278 reflections
a = 15.7745 (4) Å θ = 2.6–27.5°
b = 9.5424 (2) Å µ = 1.23 mm1
c = 12.9833 (3) Å T = 293 K
β = 100.610 (1)° Prism, red
V = 1920.92 (8) Å3 0.25 × 0.25 × 0.13 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer 2155 independent reflections
Radiation source: fine-focus sealed tube 1927 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.012
Detector resolution: 0.055 pixels mm-1 θmax = 27.4°, θmin = 3.9°
ω scans h = −20→20
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) k = −12→12
Tmin = 0.749, Tmax = 0.857 l = −16→16
4155 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0748P)2 + 1.6605P] where P = (Fo2 + 2Fc2)/3
2155 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.88 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Experimental. 192 frames in 5 sets of ω scans. Rotation/frame = 2.0 °. Crystal-detector distance = 25.00 mm. Measuring time = 60 s/°.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.5 0.20825 (5) 0.75 0.04488 (18)
Cl1 0.20617 (6) 0.40123 (14) 0.58549 (12) 0.1198 (5)
Cl2 0.5 −0.33055 (10) 0.75 0.0684 (3)
O1 0.38591 (12) 0.2280 (2) 0.79173 (16) 0.0642 (5)
O2 0.45438 (12) 0.3417 (2) 0.63475 (15) 0.0593 (4)
O3 0.46568 (12) 0.05417 (17) 0.64737 (13) 0.0528 (4)
C1 0.2404 (2) 0.2638 (6) 0.7991 (4) 0.0987 (13)
H1A 0.261 0.2436 0.8718 0.148*
H1B 0.2042 0.1885 0.7677 0.148*
H1C 0.2077 0.3493 0.7928 0.148*
C2 0.31593 (17) 0.2797 (3) 0.7439 (3) 0.0622 (7)
C3 0.30871 (17) 0.3467 (3) 0.6477 (3) 0.0680 (8)
C4 0.37767 (19) 0.3776 (3) 0.5971 (2) 0.0613 (7)
C5 0.3663 (3) 0.4565 (4) 0.4949 (3) 0.0931 (12)
H5A 0.4217 0.4738 0.477 0.14*
H5B 0.338 0.5441 0.502 0.14*
H5C 0.3318 0.4018 0.4407 0.14*
C6 0.44210 (19) −0.1585 (3) 0.5553 (2) 0.0621 (6)
H6A 0.4189 −0.0946 0.5001 0.093*
H6B 0.3986 −0.2251 0.5649 0.093*
H6C 0.4906 −0.207 0.5371 0.093*
C7 0.47040 (14) −0.0786 (2) 0.65475 (17) 0.0450 (5)
C8 0.5 −0.1469 (3) 0.75 0.0458 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0379 (3) 0.0458 (3) 0.0498 (3) 0 0.00487 (18) 0
Cl1 0.0618 (5) 0.1015 (7) 0.1759 (12) 0.0164 (5) −0.0313 (6) 0.0217 (8)
Cl2 0.0768 (6) 0.0450 (5) 0.0797 (6) 0 0.0049 (5) 0
O1 0.0414 (9) 0.0889 (14) 0.0627 (11) 0.0061 (9) 0.0104 (8) 0.0053 (10)
O2 0.0604 (10) 0.0518 (10) 0.0645 (10) 0.0054 (8) 0.0086 (8) 0.0092 (8)
O3 0.0610 (10) 0.0481 (9) 0.0457 (8) −0.0038 (7) 0.0005 (7) 0.0015 (7)
C1 0.0466 (17) 0.135 (4) 0.119 (3) 0.0057 (19) 0.0246 (18) −0.012 (3)
C2 0.0405 (12) 0.0661 (16) 0.0778 (17) 0.0025 (11) 0.0050 (11) −0.0189 (13)
C3 0.0476 (13) 0.0521 (14) 0.095 (2) 0.0087 (11) −0.0113 (13) −0.0039 (14)
C4 0.0675 (16) 0.0383 (11) 0.0687 (15) 0.0023 (10) −0.0117 (12) −0.0008 (11)
C5 0.115 (3) 0.0650 (19) 0.085 (2) −0.0019 (19) −0.019 (2) 0.0217 (17)
C6 0.0720 (17) 0.0623 (15) 0.0495 (13) −0.0082 (13) 0.0049 (11) −0.0076 (11)
C7 0.0369 (10) 0.0515 (12) 0.0462 (11) −0.0034 (8) 0.0066 (8) −0.0030 (9)
C8 0.0390 (14) 0.0463 (16) 0.0520 (16) 0 0.0079 (12) 0

Geometric parameters (Å, º)

Fe1—O1i 1.9818 (18) C1—H1C 0.96
Fe1—O1 1.9818 (18) C2—C3 1.388 (5)
Fe1—O3 1.9912 (17) C3—C4 1.402 (4)
Fe1—O3i 1.9912 (17) C4—C5 1.507 (4)
Fe1—O2i 1.9957 (18) C5—H5A 0.96
Fe1—O2 1.9957 (18) C5—H5B 0.96
Cl1—C3 1.749 (3) C5—H5C 0.96
Cl2—C8 1.753 (3) C6—C7 1.495 (3)
O1—C2 1.263 (3) C6—H6A 0.96
O2—C4 1.266 (3) C6—H6B 0.96
O3—C7 1.271 (3) C6—H6C 0.96
C1—C2 1.507 (5) C7—C8 1.400 (3)
C1—H1A 0.96 C8—C7i 1.400 (3)
C1—H1B 0.96
O1i—Fe1—O1 169.06 (13) C3—C2—C1 122.2 (3)
O1i—Fe1—O3 92.07 (8) C2—C3—C4 125.2 (2)
O1—Fe1—O3 96.00 (9) C2—C3—Cl1 117.9 (2)
O1i—Fe1—O3i 96.00 (9) C4—C3—Cl1 116.9 (2)
O1—Fe1—O3i 92.07 (8) O2—C4—C3 122.1 (3)
O3—Fe1—O3i 84.81 (10) O2—C4—C5 115.2 (3)
O1i—Fe1—O2i 85.63 (8) C3—C4—C5 122.7 (3)
O1—Fe1—O2i 87.39 (8) C4—C5—H5A 109.5
O3—Fe1—O2i 171.54 (8) C4—C5—H5B 109.5
O3i—Fe1—O2i 87.33 (8) H5A—C5—H5B 109.5
O1i—Fe1—O2 87.39 (8) C4—C5—H5C 109.5
O1—Fe1—O2 85.63 (8) H5A—C5—H5C 109.5
O3—Fe1—O2 87.33 (8) H5B—C5—H5C 109.5
O3i—Fe1—O2 171.54 (8) C7—C6—H6A 109.5
O2i—Fe1—O2 100.68 (12) C7—C6—H6B 109.5
C2—O1—Fe1 131.2 (2) H6A—C6—H6B 109.5
C4—O2—Fe1 130.47 (19) C7—C6—H6C 109.5
C7—O3—Fe1 132.86 (15) H6A—C6—H6C 109.5
C2—C1—H1A 109.5 H6B—C6—H6C 109.5
C2—C1—H1B 109.5 O3—C7—C8 122.4 (2)
H1A—C1—H1B 109.5 O3—C7—C6 116.0 (2)
C2—C1—H1C 109.5 C8—C7—C6 121.6 (2)
H1A—C1—H1C 109.5 C7—C8—C7i 124.5 (3)
H1B—C1—H1C 109.5 C7—C8—Cl2 117.75 (16)
O1—C2—C3 122.8 (3) C7i—C8—Cl2 117.75 (16)
O1—C2—C1 115.0 (3)
O1i—Fe1—O1—C2 64.1 (3) C1—C2—C3—C4 173.3 (3)
O3—Fe1—O1—C2 −73.3 (3) O1—C2—C3—Cl1 175.1 (2)
O3i—Fe1—O1—C2 −158.3 (3) C1—C2—C3—Cl1 −5.2 (4)
O2i—Fe1—O1—C2 114.5 (3) Fe1—O2—C4—C3 13.5 (4)
O2—Fe1—O1—C2 13.6 (3) Fe1—O2—C4—C5 −167.0 (2)
O1i—Fe1—O2—C4 170.7 (2) C2—C3—C4—O2 2.2 (5)
O1—Fe1—O2—C4 −17.7 (2) Cl1—C3—C4—O2 −179.3 (2)
O3—Fe1—O2—C4 78.5 (2) C2—C3—C4—C5 −177.2 (3)
O2i—Fe1—O2—C4 −104.2 (2) Cl1—C3—C4—C5 1.3 (4)
O1i—Fe1—O3—C7 93.7 (2) Fe1—O3—C7—C8 4.1 (3)
O1—Fe1—O3—C7 −93.7 (2) Fe1—O3—C7—C6 −176.07 (17)
O3i—Fe1—O3—C7 −2.14 (17) O3—C7—C8—C7i −2.01 (16)
O2—Fe1—O3—C7 −179.0 (2) C6—C7—C8—C7i 178.2 (2)
Fe1—O1—C2—C3 −5.3 (4) O3—C7—C8—Cl2 177.99 (16)
Fe1—O1—C2—C1 174.9 (2) C6—C7—C8—Cl2 −1.8 (2)
O1—C2—C3—C4 −6.4 (5)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···Cl1ii 0.96 2.78 3.642 (3) 150

Symmetry code: (ii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2375).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1–37.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Garibay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335–378.
  6. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Iball, J. & Morgan, C. H. (1967). Acta Cryst. 23, 239–244.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Perdih, F. (2011). Acta Cryst. E67, m1697. [DOI] [PMC free article] [PubMed]
  10. Perdih, F. (2012). Acta Cryst. E68, m806.
  11. Pfluger, C. E. & Haradem, P. S. (1983). Inorg. Chim. Acta, 69, 141–146.
  12. Schröder, K., Join, B., Amali, A. J., Junge, K., Ribas, X., Costas, M. & Beller, M. (2011). Angew. Chem. Int. Ed. 50, 1425–1429. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023215/im2375sup1.cif

e-68-0m807-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023215/im2375Isup2.hkl

e-68-0m807-Isup2.hkl (103.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES