Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):m811. doi: 10.1107/S1600536812022738

Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)zinc

Ali Dehghani a,b, Mostafa M Amini a,*, Ezzatollah Najafi a, Azadeh Tadjarodi b, Behrouz Notash a
PMCID: PMC3379135  PMID: 22719356

Abstract

The reaction of equimolar amounts of zinc bromide and 2,9-dimethyl-1,10-phenanthroline in dry methanol provided the title compound, [ZnBr2(C14H12N2)], in good yield. The ZnII ion is coordinated in a distorted tetra­hedral environment by two N atoms from the chelating 2,9-dimethyl-1,10-phenanthroline ligand and two bromide ions. There is inter­molecular π–π stacking between adjacent phenanthroline units, with centroid–centroid distances of 3.594 (3) and 3.652 (3) Å.

Related literature  

For similiar structures, see: Seebacher et al. (2004); Harvey et al. (1999); Jordan et al. (1991); Pallenberg et al. (1997).graphic file with name e-68-0m811-scheme1.jpg

Experimental  

Crystal data  

  • [ZnBr2(C14H12N2)]

  • M r = 433.45

  • Monoclinic, Inline graphic

  • a = 9.4113 (19) Å

  • b = 18.424 (4) Å

  • c = 9.3362 (19) Å

  • β = 112.59 (3)°

  • V = 1494.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.98 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.17 mm

Data collection  

  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-RED32; Stoe & Cie, (2005)] T min = 0.274, T max = 0.383

  • 11850 measured reflections

  • 4014 independent reflections

  • 2304 reflections with I > 2σ(I)

  • R int = 0.076

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.100

  • S = 0.95

  • 4014 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022738/bt5921sup1.cif

e-68-0m811-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022738/bt5921Isup2.hkl

e-68-0m811-Isup2.hkl (196.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the Iran University of Science and Technology for supporting this study.

supplementary crystallographic information

Comment

1,10-phenanthroline is a good bidentate chelating ligand, we present the crystal structure of the title complex based on 2,9-dimethyl-1,10-phenanthroline.

In the molecule of the title compound, (Fig. 1), the two N atoms of one phen ligand and two Br atoms are coordinated to ZnII atom in a distorted tetrahedral arrangement. The Zn—N bonds [average 2.062 Å] are somewhat shorter than the Zn—Br distances [average 2.328 Å] and they are closed to such bond lengths found in other discrete 1,10-phenanthroline derivatives of zinc complexes (Seebacher et al., (2004); Harvey et al.,(1999)). The two N atoms bite angle of phen ligand, N(2)—Zn(1)—N(1), significantly is smaller than N(2)—Zn(1)—Br(1)and N(1)—Zn(1)—Br(2). The bite angle in title complex is also similar to that of found in other zinc complexes of 1,10-phenanthroline, regardless of geometry of complex (Jordan et al.,(1991); Pallenberg et al.,(1997)).

In the crystal structure, There are intermolecular π–π stacking between adjacent phenanthroline, with a centroid–centroid distances of 3.594 (3) and 3.652 (3) Å (Fig. 2). These π-π stacking interactions lead to the stabilization of the crystal structure.

Experimental

ZnBr2.2H2O (0.22 g, 1 mmol) and 2,9-dimethyl-1,10-phenanthroline (0.21, 1 mmol) were loaded in a convection tube; the tube was filled with methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days(m.p. > 543 K).

Refinement

The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups, C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The packing diagram of the title compound showing π–π stacking between adjacent 2,9-dimethyl-1,10-phenanthroline ligands.

Crystal data

[ZnBr2(C14H12N2)] F(000) = 840
Mr = 433.45 Dx = 1.926 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4014 reflections
a = 9.4113 (19) Å θ = 2.2–29.2°
b = 18.424 (4) Å µ = 6.98 mm1
c = 9.3362 (19) Å T = 298 K
β = 112.59 (3)° Block, colorless
V = 1494.6 (6) Å3 0.25 × 0.20 × 0.17 mm
Z = 4

Data collection

Stoe IPDS 2T diffractometer 4014 independent reflections
Radiation source: fine-focus sealed tube 2304 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.076
Detector resolution: 0.15 mm pixels mm-1 θmax = 29.2°, θmin = 2.2°
rotation method scans h = −12→12
Absorption correction: numerical [shape of crystal determined optically (X-RED32; Stoe & Cie, (2005)] k = −23→25
Tmin = 0.274, Tmax = 0.383 l = −12→12
11850 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0423P)2] where P = (Fo2 + 2Fc2)/3
4014 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.66996 (6) 0.13233 (3) 0.75289 (6) 0.03618 (15)
Br1 0.79790 (8) 0.24221 (4) 0.77098 (8) 0.0667 (2)
Br2 0.74325 (7) 0.03299 (3) 0.63755 (6) 0.05122 (17)
N1 0.6409 (4) 0.1030 (2) 0.9541 (4) 0.0317 (8)
N2 0.4348 (4) 0.1459 (2) 0.6749 (4) 0.0349 (9)
C1 0.9118 (6) 0.0852 (3) 1.1082 (6) 0.0514 (14)
H1A 0.9226 0.0590 1.0240 0.077*
H1B 0.9740 0.0627 1.2047 0.077*
H1C 0.9447 0.1345 1.1074 0.077*
C2 0.7466 (5) 0.0842 (3) 1.0900 (5) 0.0359 (10)
C3 0.7030 (6) 0.0634 (3) 1.2131 (5) 0.0429 (12)
H3 0.7775 0.0492 1.3077 0.051*
C4 0.5507 (6) 0.0641 (3) 1.1932 (6) 0.0434 (12)
H4 0.5217 0.0492 1.2733 0.052*
C5 0.4398 (6) 0.0872 (3) 1.0528 (5) 0.0376 (11)
C6 0.4904 (5) 0.1057 (2) 0.9352 (5) 0.0318 (10)
C7 0.2784 (7) 0.0920 (3) 1.0226 (7) 0.0479 (13)
H7 0.2437 0.0787 1.0996 0.058*
C8 0.1774 (6) 0.1151 (3) 0.8858 (7) 0.0561 (15)
H8 0.0740 0.1188 0.8706 0.067*
C9 0.2244 (6) 0.1343 (3) 0.7625 (6) 0.0442 (12)
C10 0.3796 (5) 0.1290 (3) 0.7864 (5) 0.0346 (10)
C11 0.1239 (6) 0.1607 (3) 0.6167 (7) 0.0557 (14)
H11 0.0195 0.1660 0.5956 0.067*
C12 0.1803 (6) 0.1781 (3) 0.5082 (6) 0.0549 (14)
H12 0.1140 0.1956 0.4124 0.066*
C13 0.3386 (6) 0.1702 (3) 0.5378 (6) 0.0442 (12)
C14 0.4045 (7) 0.1888 (3) 0.4201 (6) 0.0588 (15)
H14A 0.4686 0.2310 0.4535 0.088*
H14B 0.3224 0.1985 0.3222 0.088*
H14C 0.4648 0.1488 0.4089 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0290 (3) 0.0397 (3) 0.0402 (3) 0.0015 (3) 0.0137 (2) 0.0058 (2)
Br1 0.0542 (4) 0.0502 (4) 0.0879 (5) −0.0154 (3) 0.0186 (3) 0.0098 (3)
Br2 0.0539 (4) 0.0554 (4) 0.0464 (3) 0.0142 (3) 0.0216 (3) 0.0027 (3)
N1 0.028 (2) 0.032 (2) 0.035 (2) 0.0023 (17) 0.0115 (17) 0.0016 (16)
N2 0.032 (2) 0.035 (2) 0.0329 (19) 0.0022 (18) 0.0073 (16) −0.0006 (17)
C1 0.037 (3) 0.062 (4) 0.050 (3) 0.005 (3) 0.011 (3) 0.003 (3)
C2 0.033 (3) 0.034 (3) 0.035 (2) 0.001 (2) 0.007 (2) −0.0042 (19)
C3 0.049 (3) 0.041 (3) 0.033 (2) 0.002 (3) 0.008 (2) 0.000 (2)
C4 0.056 (3) 0.041 (3) 0.039 (3) −0.002 (3) 0.024 (3) 0.000 (2)
C5 0.039 (3) 0.032 (3) 0.047 (3) −0.005 (2) 0.023 (2) −0.005 (2)
C6 0.025 (2) 0.027 (2) 0.042 (2) 0.0005 (19) 0.012 (2) −0.0028 (19)
C7 0.046 (3) 0.046 (3) 0.064 (3) 0.000 (3) 0.034 (3) 0.004 (3)
C8 0.030 (3) 0.061 (4) 0.080 (4) −0.004 (3) 0.024 (3) 0.002 (3)
C9 0.028 (2) 0.045 (3) 0.056 (3) 0.001 (2) 0.011 (2) −0.002 (3)
C10 0.024 (2) 0.031 (3) 0.044 (2) 0.000 (2) 0.0077 (19) −0.001 (2)
C11 0.025 (3) 0.065 (4) 0.066 (4) 0.011 (3) 0.004 (2) −0.002 (3)
C12 0.039 (3) 0.058 (4) 0.047 (3) 0.012 (3) −0.006 (2) 0.007 (3)
C13 0.043 (3) 0.037 (3) 0.044 (3) 0.010 (2) 0.007 (2) −0.001 (2)
C14 0.066 (4) 0.061 (4) 0.039 (3) 0.013 (3) 0.010 (3) 0.013 (3)

Geometric parameters (Å, º)

Zn1—N2 2.062 (4) C5—C6 1.396 (6)
Zn1—N1 2.071 (3) C5—C7 1.437 (7)
Zn1—Br1 2.3281 (9) C6—C10 1.445 (7)
Zn1—Br2 2.3572 (8) C7—C8 1.336 (8)
N1—C2 1.322 (6) C7—H7 0.9300
N1—C6 1.360 (6) C8—C9 1.427 (7)
N2—C13 1.329 (6) C8—H8 0.9300
N2—C10 1.366 (5) C9—C10 1.394 (7)
C1—C2 1.498 (7) C9—C11 1.412 (8)
C1—H1A 0.9600 C11—C12 1.351 (7)
C1—H1B 0.9600 C11—H11 0.9300
C1—H1C 0.9600 C12—C13 1.414 (7)
C2—C3 1.414 (6) C12—H12 0.9300
C3—C4 1.372 (7) C13—C14 1.494 (7)
C3—H3 0.9300 C14—H14A 0.9600
C4—C5 1.392 (7) C14—H14B 0.9600
C4—H4 0.9300 C14—H14C 0.9600
N2—Zn1—N1 81.63 (14) N1—C6—C5 122.8 (4)
N2—Zn1—Br1 112.03 (11) N1—C6—C10 117.8 (4)
N1—Zn1—Br1 113.94 (11) C5—C6—C10 119.4 (4)
N2—Zn1—Br2 113.29 (11) C8—C7—C5 121.2 (4)
N1—Zn1—Br2 112.05 (11) C8—C7—H7 119.4
Br1—Zn1—Br2 118.32 (3) C5—C7—H7 119.4
C2—N1—C6 119.7 (4) C7—C8—C9 121.5 (5)
C2—N1—Zn1 128.7 (3) C7—C8—H8 119.2
C6—N1—Zn1 111.5 (3) C9—C8—H8 119.2
C13—N2—C10 119.5 (4) C10—C9—C11 116.8 (4)
C13—N2—Zn1 128.5 (3) C10—C9—C8 118.9 (5)
C10—N2—Zn1 112.0 (3) C11—C9—C8 124.2 (5)
C2—C1—H1A 109.5 N2—C10—C9 123.0 (4)
C2—C1—H1B 109.5 N2—C10—C6 117.1 (4)
H1A—C1—H1B 109.5 C9—C10—C6 119.9 (4)
C2—C1—H1C 109.5 C12—C11—C9 119.6 (5)
H1A—C1—H1C 109.5 C12—C11—H11 120.2
H1B—C1—H1C 109.5 C9—C11—H11 120.2
N1—C2—C3 120.3 (4) C11—C12—C13 121.1 (5)
N1—C2—C1 118.1 (4) C11—C12—H12 119.5
C3—C2—C1 121.6 (4) C13—C12—H12 119.5
C4—C3—C2 120.1 (5) N2—C13—C12 120.0 (5)
C4—C3—H3 120.0 N2—C13—C14 117.6 (5)
C2—C3—H3 120.0 C12—C13—C14 122.4 (5)
C3—C4—C5 119.8 (4) C13—C14—H14A 109.5
C3—C4—H4 120.1 C13—C14—H14B 109.5
C5—C4—H4 120.1 H14A—C14—H14B 109.5
C4—C5—C6 117.1 (4) C13—C14—H14C 109.5
C4—C5—C7 123.9 (4) H14A—C14—H14C 109.5
C6—C5—C7 119.0 (5) H14B—C14—H14C 109.5
N2—Zn1—N1—C2 −177.9 (4) C7—C5—C6—C10 −0.1 (7)
Br1—Zn1—N1—C2 −67.4 (4) C4—C5—C7—C8 179.4 (5)
Br2—Zn1—N1—C2 70.3 (4) C6—C5—C7—C8 −1.5 (8)
N2—Zn1—N1—C6 1.1 (3) C5—C7—C8—C9 1.7 (9)
Br1—Zn1—N1—C6 111.6 (3) C7—C8—C9—C10 −0.3 (9)
Br2—Zn1—N1—C6 −110.7 (3) C7—C8—C9—C11 −178.5 (6)
N1—Zn1—N2—C13 176.8 (4) C13—N2—C10—C9 1.5 (7)
Br1—Zn1—N2—C13 64.3 (4) Zn1—N2—C10—C9 179.4 (4)
Br2—Zn1—N2—C13 −72.7 (4) C13—N2—C10—C6 −177.5 (4)
N1—Zn1—N2—C10 −0.8 (3) Zn1—N2—C10—C6 0.4 (5)
Br1—Zn1—N2—C10 −113.3 (3) C11—C9—C10—N2 −1.9 (8)
Br2—Zn1—N2—C10 109.7 (3) C8—C9—C10—N2 179.8 (5)
C6—N1—C2—C3 3.3 (7) C11—C9—C10—C6 177.1 (5)
Zn1—N1—C2—C3 −177.8 (3) C8—C9—C10—C6 −1.3 (8)
C6—N1—C2—C1 −177.3 (4) N1—C6—C10—N2 0.6 (6)
Zn1—N1—C2—C1 1.7 (7) C5—C6—C10—N2 −179.5 (4)
N1—C2—C3—C4 −1.5 (7) N1—C6—C10—C9 −178.4 (4)
C1—C2—C3—C4 179.1 (5) C5—C6—C10—C9 1.4 (7)
C2—C3—C4—C5 −1.7 (8) C10—C9—C11—C12 1.0 (8)
C3—C4—C5—C6 2.8 (7) C8—C9—C11—C12 179.2 (6)
C3—C4—C5—C7 −178.0 (5) C9—C11—C12—C13 0.2 (9)
C2—N1—C6—C5 −2.0 (7) C10—N2—C13—C12 −0.2 (7)
Zn1—N1—C6—C5 178.9 (4) Zn1—N2—C13—C12 −177.7 (4)
C2—N1—C6—C10 177.8 (4) C10—N2—C13—C14 179.4 (4)
Zn1—N1—C6—C10 −1.3 (5) Zn1—N2—C13—C14 1.9 (7)
C4—C5—C6—N1 −1.1 (7) C11—C12—C13—N2 −0.7 (9)
C7—C5—C6—N1 179.8 (5) C11—C12—C13—C14 179.8 (6)
C4—C5—C6—C10 179.1 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5921).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  3. Harvey, M., Baggio, S., Baggio, R. & Mombrú, A. W. (1999). Acta Cryst. C55, 308–310.
  4. Jordan, K. J., Wacholtz, W. F. & Crosby, G. A. (1991). Inorg. Chem. 30, 4588–4593.
  5. Pallenberg, A. J., Marschner, T. M. & Barnhart, D. M. (1997). Polyhedron, 16, 2711–2719.
  6. Seebacher, J., Mian, J. & Vahrenkamp, H. (2004). Eur. J. Inorg. Chem. pp. 409–417.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stoe & Cie (2005). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022738/bt5921sup1.cif

e-68-0m811-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022738/bt5921Isup2.hkl

e-68-0m811-Isup2.hkl (196.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES