Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):m842. doi: 10.1107/S1600536812023185

Dibromido{N′-[1-(pyridin-2-yl)ethyl­idene]picolinohydrazide-κ2 N′,O}cadmium

Mehmet Akkurt a,*, Ali Akbar Khandar b, Muhammad Nawaz Tahir c, Seyed Abolfazl Hosseini Yazdi b, Farhad Akbari Afkhami b
PMCID: PMC3379182  PMID: 22719380

Abstract

The title compound, [CdBr2(C13H12N4O)], was obtained from the reaction of Cd(NO3)2·4H2O with meth­yl(pyridin-2-yl)methanone picolinoylhydrazone and sodium bromide. The Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand and two bromide anions, forming a Br2CdN2O polyhedron with a distorted trigonal–bipyramidal coordination geometry. In the crystal, non-classical C—H⋯Br hydrogen bonds are observed. In addition, π–π stacking inter­actions [centroid–centroid distance = 3.7455 (19) Å] contribute to the stabilization of the crystal structure.

Related literature  

For related complexes with similar tridentate ligands, see: Kasuga et al. (2001); Chen et al. (2005); Datta et al. (2011).graphic file with name e-68-0m842-scheme1.jpg

Experimental  

Crystal data  

  • [CdBr2(C13H12N4O)]

  • M r = 512.48

  • Monoclinic, Inline graphic

  • a = 8.1336 (3) Å

  • b = 13.6111 (5) Å

  • c = 14.6102 (5) Å

  • β = 90.550 (1)°

  • V = 1617.38 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.29 mm−1

  • T = 296 K

  • 0.32 × 0.18 × 0.16 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.267, T max = 0.365

  • 15317 measured reflections

  • 3874 independent reflections

  • 2859 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.062

  • S = 1.02

  • 3874 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023185/vm2176sup1.cif

e-68-0m842-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023185/vm2176Isup2.hkl

e-68-0m842-Isup2.hkl (189.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯Br2i 0.96 2.91 3.810 (4) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. Recently, the relative unsymmetrical tridentate Schiff base ligands and their hydrogenated derivatives have been introduced into the coordination chemistry to assemble polymers with beautiful molecular structures. Some organic N-donor ligands are often chosen to fabricate these various complexes. In this connection, some complexes with similar tridentate ligands have been studied (Kasuga et al., 2001; Chen et al., 2005; Datta et al., 2011). Herein, we report the structure of a new cadmium complex based on a pyridine based tridentate Schiff base ligand.

The molecular structure of title compound is shown in Fig. 1. The Cd ion is five coordinated forming a distorted trigonal-bipyramidal coordination sphere, in which three positions are occupied by two N atoms and one O atom from the tridentate Schiff base ligand, and two positions coming from two bromide ions. As can be seen in Fig. 1, all non-H atoms of the tridentate Schiff base ligand are nearly coplanar, with maximum deviations of -0.053 (4) Å for C7 and 0.049 (2) Å for N2.

Molecules are linked to each other, via weak C—H···Br intermolecular hydrogen bonds along the crystallographic a axis (Table 1, Fig. 2). In the crystal, weak π-π stacking interactions also contribute to the stabilization: [Cg3···Cg3(1 - x, -y, 1 - z) = 3.7455 (19) Å; where Cg3 is the centroid of the N1/C1–C5 ring].

Experimental

The potentially tridenatate ligand methyl-2-pyridyl ketone picolinoyl hydrazone was obtained by condensation of methyl-2-pyridyl ketone and picolinic acid hydrazide with the ratio 1:1 in methanol. The title compound C13H12Br2CdN4O has been synthesized by the reaction of methanolic solution of the ligand and Cd(NO3)2.4H2O in the presence of excess amount of NaBr. The ligand (1 mmol, 0.240 g) and cadmium nitrate (1 mmol, 279 g) were placed in main arm of a branched tube; sodium bromide (2 mmol, 0.206 g) was added to the mixture too. Methanol was carefully added to fill the arms. The tube was sealed and the ligand-containing arm was immersed in an oil bath at 333 K while the branched arm was kept at ambient temperature. After five days, suitable single crystals, were deposited in the cooler arm which were isolated, filtered off, washed with acetone and ether and air dried.

Refinement

H atoms bonded to C atoms were positioned geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H. The amine H atom was located in difference Fourier map and refined freely [N—H = 0.86 (2) Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the intermolecular C—H···Br hydrogen bonds and π-π stacking interactions of the title compound. H atoms not involved in hydrogen bonding are omitted.

Crystal data

[CdBr2(C13H12N4O)] F(000) = 976
Mr = 512.48 Dx = 2.105 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 545 reflections
a = 8.1336 (3) Å θ = 4.2–18.3°
b = 13.6111 (5) Å µ = 6.29 mm1
c = 14.6102 (5) Å T = 296 K
β = 90.550 (1)° Prism, colourless
V = 1617.38 (10) Å3 0.32 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3874 independent reflections
Radiation source: fine-focus sealed tube 2859 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω scans θmax = 28.1°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.267, Tmax = 0.365 k = −17→18
15317 measured reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.5132P] where P = (Fo2 + 2Fc2)/3
3874 reflections (Δ/σ)max = 0.001
195 parameters Δρmax = 0.47 e Å3
1 restraint Δρmin = −0.54 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.32238 (3) 0.16938 (2) 0.27655 (2) 0.0429 (1)
Br1 0.04606 (5) 0.15378 (3) 0.35202 (3) 0.0626 (1)
Br2 0.42596 (5) 0.34049 (2) 0.23982 (3) 0.0550 (1)
O1 0.2555 (3) 0.10824 (15) 0.12175 (14) 0.0493 (8)
N1 0.5195 (3) 0.12698 (18) 0.38976 (17) 0.0438 (9)
N2 0.4511 (3) 0.02135 (16) 0.24438 (15) 0.0370 (8)
N3 0.4106 (3) −0.02318 (18) 0.16427 (17) 0.0401 (8)
N4 0.3565 (3) −0.11450 (19) 0.01147 (18) 0.0495 (10)
C1 0.5632 (5) 0.1867 (2) 0.4579 (2) 0.0555 (11)
C2 0.6781 (5) 0.1618 (3) 0.5230 (2) 0.0585 (11)
C3 0.7498 (4) 0.0712 (3) 0.5186 (2) 0.0585 (14)
C4 0.7079 (4) 0.0090 (2) 0.4477 (2) 0.0487 (11)
C5 0.5925 (4) 0.0390 (2) 0.3832 (2) 0.0385 (9)
C6 0.5464 (3) −0.0217 (2) 0.3021 (2) 0.0377 (9)
C7 0.6137 (5) −0.1226 (2) 0.2915 (2) 0.0577 (11)
C8 0.3114 (4) 0.0268 (2) 0.1050 (2) 0.0392 (9)
C9 0.2810 (4) −0.0274 (2) 0.01743 (19) 0.0381 (9)
C10 0.1844 (4) 0.0113 (2) −0.0505 (2) 0.0473 (11)
C11 0.1592 (4) −0.0425 (2) −0.1296 (2) 0.0523 (11)
C12 0.2361 (5) −0.1319 (2) −0.1370 (2) 0.0543 (11)
C13 0.3333 (5) −0.1652 (2) −0.0658 (2) 0.0569 (13)
H1 0.51340 0.24800 0.46140 0.0660*
H2 0.70680 0.20560 0.56930 0.0700*
H3 0.82590 0.05170 0.56290 0.0700*
H3N 0.434 (4) −0.0819 (15) 0.150 (2) 0.056 (10)*
H4 0.75670 −0.05260 0.44310 0.0580*
H7A 0.54530 −0.15920 0.24990 0.0860*
H7B 0.61610 −0.15480 0.34990 0.0860*
H7C 0.72320 −0.11890 0.26780 0.0860*
H10 0.13630 0.07280 −0.04360 0.0570*
H11 0.09200 −0.01880 −0.17650 0.0630*
H12 0.22280 −0.16960 −0.18970 0.0650*
H13 0.38510 −0.22580 −0.07180 0.0680*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0474 (1) 0.0383 (1) 0.0428 (1) 0.0045 (1) −0.0051 (1) −0.0016 (1)
Br1 0.0532 (2) 0.0726 (3) 0.0622 (2) −0.0011 (2) 0.0063 (2) 0.0021 (2)
Br2 0.0638 (2) 0.0413 (2) 0.0598 (2) −0.0049 (2) −0.0091 (2) 0.0024 (2)
O1 0.0616 (15) 0.0432 (13) 0.0429 (12) 0.0105 (11) −0.0085 (11) −0.0083 (10)
N1 0.0503 (16) 0.0397 (14) 0.0412 (15) −0.0023 (12) −0.0086 (12) 0.0021 (11)
N2 0.0393 (14) 0.0367 (13) 0.0350 (14) −0.0022 (11) −0.0031 (11) −0.0016 (10)
N3 0.0476 (15) 0.0354 (14) 0.0373 (14) −0.0005 (12) −0.0045 (11) −0.0063 (11)
N4 0.0654 (19) 0.0394 (15) 0.0436 (16) 0.0006 (13) −0.0089 (13) −0.0043 (12)
C1 0.075 (2) 0.0403 (18) 0.051 (2) −0.0047 (17) −0.0117 (18) −0.0030 (15)
C2 0.071 (2) 0.061 (2) 0.0433 (19) −0.0144 (19) −0.0141 (17) −0.0057 (16)
C3 0.056 (2) 0.073 (3) 0.046 (2) −0.0134 (18) −0.0175 (17) 0.0083 (17)
C4 0.0471 (19) 0.0505 (19) 0.0483 (19) −0.0019 (15) −0.0065 (15) 0.0107 (15)
C5 0.0371 (16) 0.0401 (16) 0.0381 (16) −0.0056 (13) −0.0025 (13) 0.0074 (13)
C6 0.0359 (16) 0.0361 (16) 0.0411 (17) −0.0045 (13) 0.0005 (13) 0.0033 (13)
C7 0.065 (2) 0.0458 (19) 0.062 (2) 0.0137 (17) −0.0072 (18) −0.0003 (17)
C8 0.0396 (16) 0.0418 (17) 0.0362 (16) −0.0092 (14) −0.0016 (13) 0.0004 (13)
C9 0.0384 (16) 0.0383 (16) 0.0376 (16) −0.0058 (13) 0.0000 (13) −0.0005 (12)
C10 0.0495 (19) 0.0458 (18) 0.0464 (19) 0.0008 (15) −0.0065 (15) −0.0043 (15)
C11 0.056 (2) 0.057 (2) 0.0437 (19) −0.0102 (17) −0.0101 (16) 0.0044 (15)
C12 0.069 (2) 0.053 (2) 0.0408 (19) −0.0194 (18) −0.0046 (17) −0.0082 (15)
C13 0.075 (3) 0.0397 (18) 0.056 (2) −0.0021 (17) −0.0054 (19) −0.0107 (16)

Geometric parameters (Å, º)

Cd1—Br1 2.5218 (5) C5—C6 1.490 (4)
Cd1—Br2 2.5359 (4) C6—C7 1.487 (4)
Cd1—O1 2.466 (2) C8—C9 1.495 (4)
Cd1—N1 2.364 (2) C9—C10 1.366 (4)
Cd1—N2 2.321 (2) C10—C11 1.382 (4)
O1—C8 1.224 (4) C11—C12 1.373 (4)
N1—C1 1.331 (4) C12—C13 1.377 (5)
N1—C5 1.341 (4) C1—H1 0.9300
N2—N3 1.356 (3) C2—H2 0.9300
N2—C6 1.282 (4) C3—H3 0.9300
N3—C8 1.360 (4) C4—H4 0.9300
N4—C9 1.338 (4) C7—H7A 0.9600
N4—C13 1.335 (4) C7—H7B 0.9600
N3—H3N 0.85 (2) C7—H7C 0.9600
C1—C2 1.370 (5) C10—H10 0.9300
C2—C3 1.366 (6) C11—H11 0.9300
C3—C4 1.378 (4) C12—H12 0.9300
C4—C5 1.385 (4) C13—H13 0.9300
Br1—Cd1—Br2 117.98 (2) O1—C8—N3 123.0 (3)
Br1—Cd1—O1 100.54 (6) O1—C8—C9 124.0 (3)
Br1—Cd1—N1 105.95 (6) C8—C9—C10 121.4 (3)
Br1—Cd1—N2 114.91 (6) N4—C9—C8 114.9 (3)
Br2—Cd1—O1 100.76 (5) N4—C9—C10 123.8 (3)
Br2—Cd1—N1 98.50 (6) C9—C10—C11 118.9 (3)
Br2—Cd1—N2 127.09 (6) C10—C11—C12 118.1 (3)
O1—Cd1—N1 134.55 (8) C11—C12—C13 119.4 (3)
O1—Cd1—N2 67.49 (8) N4—C13—C12 123.0 (3)
N1—Cd1—N2 68.01 (8) N1—C1—H1 118.00
Cd1—O1—C8 114.21 (19) C2—C1—H1 119.00
Cd1—N1—C1 123.3 (2) C1—C2—H2 121.00
Cd1—N1—C5 117.77 (19) C3—C2—H2 121.00
C1—N1—C5 118.9 (3) C2—C3—H3 120.00
Cd1—N2—N3 117.17 (17) C4—C3—H3 120.00
Cd1—N2—C6 122.33 (18) C3—C4—H4 120.00
N3—N2—C6 120.3 (2) C5—C4—H4 120.00
N2—N3—C8 117.6 (2) C6—C7—H7A 109.00
C9—N4—C13 116.9 (3) C6—C7—H7B 109.00
C8—N3—H3N 117 (2) C6—C7—H7C 109.00
N2—N3—H3N 126 (2) H7A—C7—H7B 109.00
N1—C1—C2 123.0 (3) H7A—C7—H7C 109.00
C1—C2—C3 118.7 (3) H7B—C7—H7C 109.00
C2—C3—C4 119.2 (3) C9—C10—H10 121.00
C3—C4—C5 119.4 (3) C11—C10—H10 121.00
N1—C5—C4 120.8 (3) C10—C11—H11 121.00
C4—C5—C6 122.8 (3) C12—C11—H11 121.00
N1—C5—C6 116.4 (3) C11—C12—H12 120.00
N2—C6—C7 125.1 (3) C13—C12—H12 120.00
C5—C6—C7 120.3 (2) N4—C13—H13 119.00
N2—C6—C5 114.6 (2) C12—C13—H13 119.00
N3—C8—C9 113.0 (2)
Br1—Cd1—O1—C8 −107.6 (2) Cd1—N2—C6—C7 170.9 (2)
Br2—Cd1—O1—C8 131.0 (2) Cd1—N2—N3—C8 6.6 (3)
N1—Cd1—O1—C8 17.6 (3) Cd1—N2—C6—C5 −11.0 (3)
N2—Cd1—O1—C8 5.2 (2) N3—N2—C6—C7 −3.4 (4)
Br1—Cd1—N1—C1 −76.1 (3) N3—N2—C6—C5 174.8 (2)
Br2—Cd1—N1—C1 46.4 (3) N2—N3—C8—O1 −1.5 (4)
O1—Cd1—N1—C1 160.7 (2) N2—N3—C8—C9 177.5 (2)
N2—Cd1—N1—C1 173.0 (3) C9—N4—C13—C12 −0.5 (5)
Br1—Cd1—N1—C5 105.4 (2) C13—N4—C9—C8 −179.7 (3)
Br2—Cd1—N1—C5 −132.2 (2) C13—N4—C9—C10 −0.4 (5)
O1—Cd1—N1—C5 −17.9 (3) N1—C1—C2—C3 −0.8 (6)
N2—Cd1—N1—C5 −5.6 (2) C1—C2—C3—C4 1.8 (5)
Br1—Cd1—N2—N3 85.55 (18) C2—C3—C4—C5 −0.9 (5)
Br2—Cd1—N2—N3 −92.50 (19) C3—C4—C5—N1 −1.0 (5)
O1—Cd1—N2—N3 −5.94 (17) C3—C4—C5—C6 177.0 (3)
N1—Cd1—N2—N3 −176.5 (2) N1—C5—C6—N2 5.2 (4)
Br1—Cd1—N2—C6 −88.8 (2) C4—C5—C6—C7 5.3 (4)
Br2—Cd1—N2—C6 93.1 (2) C4—C5—C6—N2 −172.9 (3)
O1—Cd1—N2—C6 179.7 (2) N1—C5—C6—C7 −176.6 (3)
N1—Cd1—N2—C6 9.2 (2) O1—C8—C9—N4 178.4 (3)
Cd1—O1—C8—C9 177.1 (2) N3—C8—C9—C10 −179.9 (3)
Cd1—O1—C8—N3 −4.0 (4) O1—C8—C9—C10 −1.0 (5)
Cd1—N1—C5—C6 2.6 (3) N3—C8—C9—N4 −0.6 (4)
Cd1—N1—C1—C2 −179.7 (3) N4—C9—C10—C11 1.4 (5)
C1—N1—C5—C4 2.0 (4) C8—C9—C10—C11 −179.3 (3)
C1—N1—C5—C6 −176.1 (3) C9—C10—C11—C12 −1.5 (5)
C5—N1—C1—C2 −1.1 (5) C10—C11—C12—C13 0.7 (5)
Cd1—N1—C5—C4 −179.3 (2) C11—C12—C13—N4 0.3 (6)
C6—N2—N3—C8 −178.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7C···Br2i 0.96 2.91 3.810 (4) 157

Symmetry code: (i) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2176).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, L., Zhang, W., Huang, S., Jin, X. & Sun, W.-H. (2005). Inorg. Chem. Commun. 8, 41–43.
  4. Datta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2011). Acta Cryst. E67, m123. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Kasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomia, K. (2001). J. Inorg. Biochem. 84, 55–65. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023185/vm2176sup1.cif

e-68-0m842-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023185/vm2176Isup2.hkl

e-68-0m842-Isup2.hkl (189.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES