Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):m857. doi: 10.1107/S1600536812021435

Bis{2-[bis­(3,5-dimethyl-1H-pyrazol-1-yl-κN 2)meth­yl]pyridine-κN}cobalt(II) dinitrate

Chao-Hu Xiao a, Xue-Yan Song a,*, Zan Sun a, Ping Cao a, Ting Pang a
PMCID: PMC3379192  PMID: 22719390

Abstract

The central CoII ion in the title complex, [Co(C16H19N5)2](NO3)2, is located on a twofold rotation axis and has a slightly distorted octa­hedral coordination sphere. It is bonded to six N atoms from two 2-[bis­(3,5-dimethyl-1H-pyrazol-1-yl)meth­yl]pyridine ligands. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions.

Related literature  

For potential applications of similar rigid ligands in electrochemistry, see: Morin et al. (2011), in catalysis, see: Zhang et al. (2009), and for their fluxional behaviour, see: Otten et al. (2009); Arroyo et al. (2000). For N-heterocyclic rigid scorpion-type ligands, see: Reger et al. (2005); Liu et al. (2011).graphic file with name e-68-0m857-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C16H19N5)2](NO3)2

  • M r = 745.67

  • Monoclinic, Inline graphic

  • a = 17.700 (14) Å

  • b = 10.965 (9) Å

  • c = 18.37 (2) Å

  • β = 90.431 (6)°

  • V = 3565 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.40 × 0.36 × 0.32 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.805, T max = 0.841

  • 8860 measured reflections

  • 3297 independent reflections

  • 2334 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.131

  • S = 1.10

  • 3297 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021435/su2416sup1.cif

e-68-0m857-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021435/su2416Isup2.hkl

e-68-0m857-Isup2.hkl (161.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.45 3.345 (6) 162
C5—H5A⋯O2ii 0.96 2.56 3.405 (7) 147
C10—H10B⋯O3iii 0.96 2.56 3.498 (7) 167
C10—H10C⋯O3ii 0.96 2.29 3.197 (7) 156
C12—H12⋯O1iv 0.93 2.39 3.193 (6) 145
C13—H13⋯O1v 0.93 2.57 3.286 (7) 134
C14—H14⋯O3ii 0.93 2.47 3.322 (6) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Gansu (No. 0710RJZA113).

supplementary crystallographic information

Comment

Rigid ligands have captivated attention not only because of their various coordination possibilities and high structural stability, but also because of their potential applications in electrochemistry (Morin et al., 2011), catalysis (Zhang et al., 2009), and fluxional behaviour (Otten et al., 2009; Arroyo et al., 2000). In addition, N-heterocyclic rigid scorpion-type ligands have attracted increased attention due to their nitrogen coordination sites (Reger et al., 2005; Liu et al., 2011). Herein, we report on the synthesis and crystal structure the title complex, [CO(bpz*mpy)2](NO3)2, synthesized by the reaction of 2-(bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridine (bpz*mpy), with Co(NO3).6H2O.

The molecular structure of the title complex is shown in Fig. 1. The Co atom is situated on a twofold rotation axis and is coordinated by 6 N- atoms from two (bpz*mpy) ligands. The Co—N bond lengths range from 2.131 (2) to 2.149 (3) Å, hence the central cobalt ion has a slightly distorted octahedral coordination sphere.

In the crystal, molecules are linked by weak C—H···O interactions (Table 1 and Fig. 2).

Experimental

To a solution of 2-(bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridine (0.2 mmol, 56.3 mg) in 10 ml of methanol, Co(NO3).6H2O (0.1 mmol, 29.1 mg) was added. The solution was stirred at r.t. for 30 min. Yellow and block-like crystals were obtained by evaporation after one week [Yield: 46 wt%].

Refinement

All the H atoms were included in calculated position and refined in the riding-model approximation: C—H = 0.93, 0.96 and 0.98 Å CH(aromatic), CH3 and CH(methine), respectively, with Uiso(H)= k ×Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level [only one of the nitrate anions is shown; H atoms have been omitted for clarity].

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. Weak C-H···O and C-H···N interaction are shown as dashed lines.

Crystal data

[Co(C16H19N5)2](NO3)2 F(000) = 1556
Mr = 745.67 Dx = 1.389 Mg m3
Monoclinic, I2/a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2ya Cell parameters from 3198 reflections
a = 17.700 (14) Å θ = 3.1–25.0°
b = 10.965 (9) Å µ = 0.54 mm1
c = 18.37 (2) Å T = 296 K
β = 90.431 (6)° Block, yellow
V = 3565 (6) Å3 0.40 × 0.36 × 0.32 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3297 independent reflections
Radiation source: fine-focus sealed tube 2334 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −21→20
Tmin = 0.805, Tmax = 0.841 k = −13→13
8860 measured reflections l = −22→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.048P)2 + 5.1694P] where P = (Fo2 + 2Fc2)/3
3297 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.25000 0.48144 (5) 0.50000 0.0385 (2)
N1 0.30500 (13) 0.4768 (2) 0.39615 (13) 0.0435 (8)
N2 0.25949 (14) 0.4837 (2) 0.33569 (13) 0.0437 (8)
N3 0.17509 (14) 0.6129 (2) 0.45372 (14) 0.0471 (9)
N4 0.15529 (14) 0.5976 (2) 0.38206 (14) 0.0440 (9)
N5 0.17558 (14) 0.3508 (2) 0.45023 (13) 0.0408 (8)
C1 0.37561 (18) 0.4765 (3) 0.37070 (18) 0.0493 (11)
C2 0.3744 (2) 0.4835 (3) 0.2951 (2) 0.0619 (14)
C3 0.3009 (2) 0.4882 (3) 0.27378 (18) 0.0570 (11)
C4 0.4428 (2) 0.4700 (4) 0.4198 (2) 0.0730 (15)
C5 0.2655 (3) 0.4970 (5) 0.1993 (2) 0.098 (2)
C6 0.14640 (19) 0.7205 (3) 0.4735 (2) 0.0584 (14)
C7 0.1088 (2) 0.7730 (3) 0.4140 (3) 0.0724 (16)
C8 0.11550 (19) 0.6944 (3) 0.3566 (2) 0.0604 (14)
C9 0.1552 (3) 0.7711 (4) 0.5482 (2) 0.0830 (17)
C10 0.0875 (3) 0.7046 (4) 0.2799 (3) 0.096 (2)
C11 0.1499 (2) 0.2504 (3) 0.48366 (18) 0.0521 (11)
C12 0.0989 (2) 0.1722 (3) 0.4522 (2) 0.0626 (14)
C13 0.0733 (2) 0.1950 (3) 0.3826 (2) 0.0647 (14)
C14 0.09957 (19) 0.2970 (3) 0.34717 (18) 0.0532 (11)
C15 0.14991 (16) 0.3725 (3) 0.38241 (15) 0.0378 (9)
C16 0.17815 (17) 0.4864 (3) 0.34485 (16) 0.0411 (9)
O1 0.9501 (3) 0.9744 (3) 0.40558 (19) 0.1213 (19)
O2 0.8920 (2) 0.8352 (4) 0.3465 (2) 0.137 (2)
O3 0.9660 (2) 0.9549 (3) 0.29408 (17) 0.1124 (15)
N6 0.93398 (18) 0.9236 (3) 0.34876 (17) 0.0573 (11)
H2 0.41620 0.48470 0.26470 0.0740*
H4A 0.42860 0.49340 0.46820 0.1090*
H4B 0.48120 0.52430 0.40250 0.1090*
H4C 0.46200 0.38810 0.42050 0.1090*
H5A 0.23610 0.42510 0.18980 0.1460*
H5B 0.30440 0.50400 0.16340 0.1460*
H5C 0.23340 0.56750 0.19700 0.1460*
H7 0.08390 0.84760 0.41360 0.0870*
H9A 0.16930 0.70690 0.58120 0.1250*
H9B 0.10830 0.80640 0.56340 0.1250*
H9C 0.19380 0.83260 0.54830 0.1250*
H10A 0.12970 0.71300 0.24770 0.1430*
H10B 0.05530 0.77470 0.27540 0.1430*
H10C 0.05950 0.63260 0.26730 0.1430*
H11 0.16760 0.23320 0.53030 0.0630*
H12 0.08180 0.10440 0.47760 0.0750*
H13 0.03900 0.14280 0.36000 0.0770*
H14 0.08350 0.31460 0.30000 0.0640*
H16 0.15530 0.48820 0.29610 0.0490*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0381 (3) 0.0442 (3) 0.0330 (3) 0.0000 −0.0040 (2) 0.0000
N1 0.0362 (14) 0.0570 (16) 0.0372 (14) −0.0025 (11) −0.0030 (11) 0.0051 (12)
N2 0.0422 (14) 0.0556 (16) 0.0332 (14) −0.0038 (12) −0.0014 (11) 0.0093 (12)
N3 0.0456 (15) 0.0466 (16) 0.0491 (17) 0.0057 (12) −0.0076 (12) −0.0009 (12)
N4 0.0404 (14) 0.0433 (15) 0.0480 (16) −0.0011 (11) −0.0096 (12) 0.0079 (12)
N5 0.0487 (15) 0.0442 (15) 0.0296 (13) −0.0063 (11) −0.0017 (11) 0.0055 (11)
C1 0.0429 (18) 0.0565 (19) 0.0487 (19) 0.0004 (15) 0.0063 (15) 0.0060 (16)
C2 0.054 (2) 0.080 (3) 0.052 (2) 0.0016 (18) 0.0191 (17) 0.0083 (18)
C3 0.065 (2) 0.068 (2) 0.0382 (18) −0.0038 (18) 0.0082 (16) 0.0114 (16)
C4 0.0379 (19) 0.102 (3) 0.079 (3) 0.0016 (19) −0.0014 (18) 0.005 (2)
C5 0.097 (3) 0.159 (5) 0.037 (2) 0.004 (3) 0.005 (2) 0.020 (3)
C6 0.051 (2) 0.047 (2) 0.077 (3) 0.0039 (16) −0.0050 (18) −0.0030 (18)
C7 0.054 (2) 0.042 (2) 0.121 (4) 0.0073 (16) −0.016 (2) 0.010 (2)
C8 0.050 (2) 0.047 (2) 0.084 (3) −0.0003 (16) −0.0178 (19) 0.0205 (19)
C9 0.092 (3) 0.063 (3) 0.094 (3) 0.020 (2) −0.003 (3) −0.023 (2)
C10 0.108 (4) 0.077 (3) 0.101 (4) 0.005 (3) −0.052 (3) 0.031 (3)
C11 0.071 (2) 0.0503 (19) 0.0351 (18) −0.0071 (17) 0.0008 (16) 0.0088 (15)
C12 0.081 (3) 0.052 (2) 0.055 (2) −0.0218 (19) 0.0063 (19) 0.0017 (17)
C13 0.076 (3) 0.061 (2) 0.057 (2) −0.0229 (19) −0.004 (2) −0.0063 (18)
C14 0.057 (2) 0.060 (2) 0.0425 (19) −0.0131 (17) −0.0052 (16) −0.0012 (16)
C15 0.0388 (16) 0.0419 (16) 0.0326 (16) −0.0018 (12) −0.0008 (13) 0.0026 (13)
C16 0.0446 (17) 0.0462 (17) 0.0324 (15) −0.0060 (13) −0.0084 (13) 0.0086 (13)
O1 0.212 (5) 0.093 (2) 0.059 (2) −0.021 (3) 0.018 (2) −0.0085 (18)
O2 0.152 (4) 0.151 (4) 0.107 (3) −0.085 (3) 0.006 (3) 0.013 (3)
O3 0.151 (3) 0.129 (3) 0.0576 (19) −0.058 (3) 0.021 (2) 0.0059 (19)
N6 0.069 (2) 0.0579 (18) 0.0448 (19) 0.0007 (16) −0.0044 (15) 0.0120 (15)

Geometric parameters (Å, º)

Co1—N1 2.149 (3) C8—C10 1.494 (7)
Co1—N3 2.131 (3) C11—C12 1.370 (5)
Co1—N5 2.146 (3) C12—C13 1.376 (5)
Co1—N1i 2.149 (3) C13—C14 1.377 (5)
Co1—N3i 2.131 (3) C14—C15 1.375 (5)
Co1—N5i 2.146 (3) C15—C16 1.514 (5)
O1—N6 1.215 (5) C2—H2 0.9300
O2—N6 1.222 (5) C4—H4A 0.9600
O3—N6 1.207 (5) C4—H4B 0.9600
N1—N2 1.369 (4) C4—H4C 0.9600
N1—C1 1.338 (4) C5—H5C 0.9600
N2—C3 1.359 (4) C5—H5A 0.9600
N2—C16 1.451 (4) C5—H5B 0.9600
N3—N4 1.370 (4) C7—H7 0.9300
N3—C6 1.336 (4) C9—H9A 0.9600
N4—C16 1.457 (4) C9—H9B 0.9600
N4—C8 1.355 (4) C9—H9C 0.9600
N5—C11 1.342 (4) C10—H10A 0.9600
N5—C15 1.344 (4) C10—H10B 0.9600
C1—C2 1.391 (5) C10—H10C 0.9600
C1—C4 1.489 (5) C11—H11 0.9300
C2—C3 1.357 (5) C12—H12 0.9300
C3—C5 1.504 (5) C13—H13 0.9300
C6—C7 1.399 (6) C14—H14 0.9300
C6—C9 1.487 (5) C16—H16 0.9800
C7—C8 1.368 (6)
N1—Co1—N3 86.93 (9) C11—C12—C13 119.3 (3)
N1—Co1—N5 83.49 (9) C12—C13—C14 118.5 (3)
N1—Co1—N1i 177.29 (9) C13—C14—C15 119.1 (3)
N1—Co1—N3i 94.91 (9) C14—C15—C16 119.8 (3)
N1—Co1—N5i 94.69 (9) N5—C15—C16 117.3 (3)
N3—Co1—N5 84.46 (9) N5—C15—C14 122.9 (3)
N1i—Co1—N3 94.91 (9) N2—C16—N4 110.5 (2)
N3—Co1—N3i 94.88 (9) N2—C16—C15 111.6 (2)
N3—Co1—N5i 178.29 (9) N4—C16—C15 112.5 (2)
N1i—Co1—N5 94.69 (9) C1—C2—H2 126.00
N3i—Co1—N5 178.29 (9) C3—C2—H2 126.00
N5—Co1—N5i 96.25 (9) C1—C4—H4C 110.00
N1i—Co1—N3i 86.93 (9) H4A—C4—H4C 109.00
N1i—Co1—N5i 83.49 (9) H4B—C4—H4C 109.00
N3i—Co1—N5i 84.46 (9) H4A—C4—H4B 109.00
Co1—N1—N2 116.82 (17) C1—C4—H4A 110.00
Co1—N1—C1 137.8 (2) C1—C4—H4B 110.00
N2—N1—C1 105.2 (2) H5A—C5—H5B 109.00
N1—N2—C3 111.3 (2) H5A—C5—H5C 109.00
N1—N2—C16 119.0 (2) H5B—C5—H5C 109.00
C3—N2—C16 129.7 (3) C3—C5—H5A 110.00
Co1—N3—N4 117.03 (17) C3—C5—H5B 110.00
Co1—N3—C6 136.5 (2) C3—C5—H5C 110.00
N4—N3—C6 105.9 (2) C6—C7—H7 126.00
N3—N4—C8 111.4 (2) C8—C7—H7 126.00
N3—N4—C16 118.9 (2) C6—C9—H9A 109.00
C8—N4—C16 129.7 (3) H9A—C9—H9C 109.00
Co1—N5—C11 124.2 (2) H9B—C9—H9C 109.00
Co1—N5—C15 118.61 (19) C6—C9—H9C 109.00
C11—N5—C15 117.1 (3) H9A—C9—H9B 109.00
O1—N6—O2 122.1 (4) C6—C9—H9B 110.00
O1—N6—O3 118.4 (4) C8—C10—H10A 110.00
O2—N6—O3 119.1 (3) C8—C10—H10B 109.00
C2—C1—C4 127.9 (3) H10B—C10—H10C 109.00
N1—C1—C4 122.2 (3) H10A—C10—H10C 109.00
N1—C1—C2 110.0 (3) C8—C10—H10C 109.00
C1—C2—C3 107.3 (3) H10A—C10—H10B 110.00
C2—C3—C5 131.1 (4) N5—C11—H11 118.00
N2—C3—C5 122.7 (3) C12—C11—H11 119.00
N2—C3—C2 106.2 (3) C11—C12—H12 120.00
N3—C6—C7 109.3 (3) C13—C12—H12 120.00
N3—C6—C9 122.9 (3) C12—C13—H13 121.00
C7—C6—C9 127.8 (3) C14—C13—H13 121.00
C6—C7—C8 107.4 (3) C15—C14—H14 120.00
C7—C8—C10 130.5 (3) C13—C14—H14 120.00
N4—C8—C7 106.0 (3) N2—C16—H16 107.00
N4—C8—C10 123.5 (3) N4—C16—H16 107.00
N5—C11—C12 123.0 (3) C15—C16—H16 107.00
N3—Co1—N1—N2 −38.51 (18) C6—N3—N4—C8 0.7 (3)
N3—Co1—N1—C1 136.0 (3) N4—N3—C6—C7 −0.3 (3)
N5—Co1—N1—N2 46.26 (18) Co1—N3—C6—C9 −9.4 (5)
N5—Co1—N1—C1 −139.3 (3) C6—N3—N4—C16 −179.3 (3)
N3i—Co1—N1—N2 −133.15 (18) Co1—N3—N4—C8 −172.3 (2)
N3i—Co1—N1—C1 41.3 (3) Co1—N3—C6—C7 170.7 (2)
N5i—Co1—N1—N2 142.02 (18) Co1—N3—N4—C16 7.7 (3)
N5i—Co1—N1—C1 −43.5 (3) N4—N3—C6—C9 179.7 (3)
N1—Co1—N3—N4 36.26 (19) C8—N4—C16—C15 −122.9 (3)
N1—Co1—N3—C6 −133.9 (3) N3—N4—C8—C10 178.8 (3)
N5—Co1—N3—N4 −47.50 (19) N3—N4—C16—N2 −68.3 (3)
N5—Co1—N3—C6 142.3 (3) N3—N4—C8—C7 −0.9 (4)
N1i—Co1—N3—N4 −141.75 (19) C16—N4—C8—C7 179.2 (3)
N1i—Co1—N3—C6 48.1 (3) N3—N4—C16—C15 57.1 (3)
N3i—Co1—N3—N4 130.92 (19) C8—N4—C16—N2 111.6 (3)
N3i—Co1—N3—C6 −39.3 (3) C16—N4—C8—C10 −1.1 (5)
N1—Co1—N5—C11 137.7 (3) C11—N5—C15—C16 179.4 (3)
N1—Co1—N5—C15 −45.4 (2) Co1—N5—C15—C16 2.3 (3)
N3—Co1—N5—C11 −134.8 (3) C15—N5—C11—C12 −0.9 (5)
N3—Co1—N5—C15 42.1 (2) C11—N5—C15—C14 −0.1 (4)
N1i—Co1—N5—C11 −40.3 (3) Co1—N5—C15—C14 −177.2 (2)
N1i—Co1—N5—C15 136.6 (2) Co1—N5—C11—C12 176.0 (3)
N5i—Co1—N5—C11 43.7 (3) C4—C1—C2—C3 −179.7 (4)
N5i—Co1—N5—C15 −139.5 (2) N1—C1—C2—C3 0.0 (4)
Co1—N1—N2—C3 175.87 (19) C1—C2—C3—N2 −0.2 (4)
Co1—N1—N2—C16 −3.6 (3) C1—C2—C3—C5 179.7 (4)
C1—N1—N2—C3 −0.3 (3) N3—C6—C7—C8 −0.3 (4)
C1—N1—N2—C16 −179.7 (3) C9—C6—C7—C8 179.8 (4)
N2—N1—C1—C4 179.9 (3) C6—C7—C8—C10 −179.0 (4)
Co1—N1—C1—C2 −174.7 (2) C6—C7—C8—N4 0.7 (4)
N2—N1—C1—C2 0.2 (3) N5—C11—C12—C13 1.3 (5)
Co1—N1—C1—C4 5.0 (5) C11—C12—C13—C14 −0.6 (5)
C3—N2—C16—C15 120.1 (3) C12—C13—C14—C15 −0.3 (5)
N1—N2—C16—C15 −60.6 (3) C13—C14—C15—C16 −178.8 (3)
N1—N2—C3—C2 0.3 (3) C13—C14—C15—N5 0.7 (5)
C16—N2—C3—C5 −0.2 (5) N5—C15—C16—N2 61.6 (3)
N1—N2—C3—C5 −179.6 (3) C14—C15—C16—N2 −119.0 (3)
C3—N2—C16—N4 −113.9 (3) C14—C15—C16—N4 116.2 (3)
C16—N2—C3—C2 179.6 (3) N5—C15—C16—N4 −63.3 (3)
N1—N2—C16—N4 65.4 (3)

Symmetry code: (i) −x+1/2, y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O3ii 0.93 2.45 3.345 (6) 162
C5—H5A···O2iii 0.96 2.56 3.405 (7) 147
C10—H10B···O3iv 0.96 2.56 3.498 (7) 167
C10—H10C···O3iii 0.96 2.29 3.197 (7) 156
C12—H12···O1v 0.93 2.39 3.193 (6) 145
C13—H13···O1vi 0.93 2.57 3.286 (7) 134
C14—H14···O3iii 0.93 2.47 3.322 (6) 152

Symmetry codes: (ii) −x+3/2, −y+3/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1; (vi) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2416).

References

  1. Arroyo, N., Torre, F. G., Jalón, F. A., Manzano, B. R., Moreno-Lara, B. & Rodríguez, A. M. (2000). J. Organomet. Chem. 603, 174–184.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Liu, J.-C., Guo, G.-Z., Xiao, C.-H., Song, X.-Y. & Li, M. (2011). Acta Cryst. E67, m1691. [DOI] [PMC free article] [PubMed]
  4. Morin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). J. Chem. Soc. Dalton Trans. 40, 8024–8034. [DOI] [PubMed]
  5. Otten, E., Batinas, A. A., Meetsma, A. & Hessen, B. (2009). J. Am. Chem. Soc. 131, 5298–5312. [DOI] [PubMed]
  6. Reger, D. L., Gardinier, J. R., Christian Grattan, T. & Smith, M. D. (2005). J. Organomet. Chem. 690, 1901–1912.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhang, J., Li, A. F. & Andy Hor, T. S. (2009). Dalton Trans. pp. 9327–9333. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021435/su2416sup1.cif

e-68-0m857-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021435/su2416Isup2.hkl

e-68-0m857-Isup2.hkl (161.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES