Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 2;68(Pt 6):o1587. doi: 10.1107/S160053681201882X

5-Diethyl­amino-2-[(E)-(2,4-dimeth­oxy­phen­yl)imino­meth­yl]phenol

Esen Nur Kantar a, Yavuz Köysal b,*, Sümeyye Gümüş c, Erbil Ağar c, Mustafa Serkan Soylu d
PMCID: PMC3379200  PMID: 22719398

Abstract

The title Schiff base, C19H24N2O3, exists in the crystal structure in the phenol–imine tautomeric form with an intra­molecular O—H⋯N hydrogen bond. The planes of the aromatic rings form a dihedral angle of 36.8 (8)°. The crystal packing is characterized by C—H⋯O hydrogen bonds and π–π stacking inter­actions [centroid–centroid distance = 3.478 (4)Å].

Related literature  

Schiff bases of salicyl­aldehyde may exhibit thermochromism or photochromism, depending on the planarity or non-planarity, respectively, of the mol­ecule, see: Amimoto & Kawato (2005); Schmidt & Cohen (1964). For similar structures, see: Ha (2011); Asiri et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1587-scheme1.jpg

Experimental  

Crystal data  

  • C19H24N2O3

  • M r = 328.40

  • Monoclinic, Inline graphic

  • a = 7.2028 (3) Å

  • b = 9.4423 (5) Å

  • c = 26.050 (2) Å

  • β = 91.742 (7)°

  • V = 1770.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.10 mm

Data collection  

  • Oxford Diffraction SuperNova (single source at offset) Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) T min = 0.933, T max = 1.000

  • 8031 measured reflections

  • 4165 independent reflections

  • 1959 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.164

  • S = 1.06

  • 4165 reflections

  • 226 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201882X/ld2055sup1.cif

e-68-o1587-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201882X/ld2055Isup2.hkl

e-68-o1587-Isup2.hkl (200KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201882X/ld2055Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (2) 1.79 (2) 2.575 (3) 153 (4)
C16—H16B⋯O1i 0.97 2.53 3.491 (4) 172

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Giresun University, Turkey, for the use of the diffractometer.

supplementary crystallographic information

Comment

We have studied a Schiff base derived from 4-(diethylamino)-2-hydroxybenzaldehyde. It is known that Schiff bases of salicylaldehyde may exhibit thermochromism or photochromism, depending on planarity or non-planarity of the molecule, respectively (Schmidt & Cohen, 1964; Amimoto & Kawato, 2005).

The C10-C9-N1-C5 torsion angle is -169.8 (2)°, that contributes to the general non-planarity of the molecule. The C15-O1 [1.352 (3)Å] bond length is similar to the corresponding distance in 4-Bromo-2- {[(pyridin-3-ylmethyl)imino]-methyl}phenol, [1.352 (4)Å; Ha, 2011] and in the monoclinic modification of 2-[(1,3-benzothiazol-2-yl)iminomethyl]phenol [1.345 (3)Å; Asiri et al., 2010).

Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases: O-H···N in phenol-imine and N-H···O in keto-amine tautomers. Our X-ray investigation shows that the title compound exists in the phenol-imine form. The title compound forms intermolecular C-H···O and a strong intramolecular O-H···N hydrogen bonds, namely C16-H16B···O1 [symmetry code: (i) x-1,y,z] and O1-H1A···N1. The intramolecular hydrogen bonds generates a six membered ring, producing S(6) ring motif (Bernstein, et al., 1995). Weak π-π stacking interactions are observed which may influence crystal stability – the distance between centroids Cg1(C2-C7 ring) to Cg1ii [symmetry code: (ii) 1-x,-y,1-z] is 3.478 (4)Å.

Experimental

The 2-{(E)-[(2,4-dimethoxyphenyl)imino]methyl}-5- (pentan-3-yl)phenol was prepared by refluxing a mixture of 4-(diethylamino)-2-hydroxybenzaldehyde (0.011 g 0.057 mmol) in 20 ml of ethanol and 2,4-dimethoxyaniline (0.009 g 0.057 mmol) in 20 ml of ethanol. The mixture was stirred for 1 h under reflux. The crystals of the 2-{(E)-[(2,4-dimethoxyphenyl)imino]methyl}-5-(pentan-3-yl)phenol suitable for X-ray analysis were obtained from ethyl alcohol by slow evaporation (yield %72; m.p. 371–373 °K).

Refinement

The structure was solved by direct methods and refined by full-matrix least-square techniques. All H atoms were located geometrically and refined using a riding model, except for atom H1 bonded to atom O1, which was freely refined. The C—H distances were fixed at 0.93-0.97 Å. The hydrogen atoms of methyl groups were placed in a staggered conformation.

Figures

Fig. 1.

Fig. 1.

A view of (I) with 50% probability displacement ellipsoids.

Crystal data

C19H24N2O3 F(000) = 704
Mr = 328.40 Dx = 1.232 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.2028 (3) Å Cell parameters from 1690 reflections
b = 9.4423 (5) Å θ = 3.2–29.0°
c = 26.050 (2) Å µ = 0.08 mm1
β = 91.742 (7)° T = 293 K
V = 1770.9 (2) Å3 Block, orange
Z = 4 0.22 × 0.15 × 0.10 mm

Data collection

Oxford Diffraction SuperNova (single source at offset) Eos diffractometer 4165 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1959 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.036
Detector resolution: 16.0454 pixels mm-1 θmax = 29.1°, θmin = 3.2°
ω scans h = −7→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) k = −9→11
Tmin = 0.933, Tmax = 1.000 l = −35→33
8031 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4437P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
4165 reflections Δρmax = 0.16 e Å3
226 parameters Δρmin = −0.15 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0031 (6)

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3547 (3) 0.5391 (2) 0.37257 (9) 0.0640 (6)
N1 0.3519 (3) 0.2811 (2) 0.40463 (9) 0.0529 (6)
O3 0.7902 (3) −0.1820 (2) 0.46150 (9) 0.0732 (7)
C13 −0.1045 (4) 0.6216 (3) 0.31791 (10) 0.0455 (6)
C14 0.0834 (3) 0.6313 (3) 0.33320 (10) 0.0490 (7)
H14 0.1488 0.7136 0.3260 0.059*
O2 0.6402 (3) 0.3076 (2) 0.47090 (8) 0.0650 (6)
C12 −0.1986 (4) 0.4935 (3) 0.32942 (11) 0.0521 (7)
H12 −0.3229 0.4830 0.3195 0.062*
C10 0.0799 (4) 0.3947 (3) 0.37000 (10) 0.0458 (6)
N2 −0.1934 (3) 0.7311 (2) 0.29284 (9) 0.0555 (6)
C15 0.1737 (4) 0.5215 (3) 0.35868 (10) 0.0469 (7)
C11 −0.1092 (4) 0.3860 (3) 0.35480 (10) 0.0502 (7)
H11 −0.1751 0.3043 0.3623 0.060*
C9 0.1748 (4) 0.2768 (3) 0.39315 (10) 0.0505 (7)
H9 0.1083 0.1950 0.4002 0.061*
C7 0.7176 (4) 0.0578 (3) 0.46522 (11) 0.0552 (8)
H7 0.8223 0.0689 0.4866 0.066*
C5 0.4521 (4) 0.1580 (3) 0.41991 (10) 0.0491 (7)
C16 −0.3951 (4) 0.7321 (3) 0.28369 (12) 0.0628 (8)
H16A −0.4404 0.8283 0.2871 0.075*
H16B −0.4527 0.6749 0.3097 0.075*
C2 0.6713 (4) −0.0755 (3) 0.44630 (11) 0.0550 (7)
C4 0.4107 (4) 0.0244 (3) 0.40130 (11) 0.0559 (8)
H4 0.3081 0.0130 0.3791 0.067*
C6 0.6091 (4) 0.1742 (3) 0.45242 (10) 0.0505 (7)
C3 0.5170 (4) −0.0937 (3) 0.41452 (11) 0.0566 (8)
H3 0.4846 −0.1830 0.4022 0.068*
C18 −0.0953 (4) 0.8577 (3) 0.27682 (12) 0.0652 (9)
H18A −0.1594 0.8975 0.2469 0.078*
H18B 0.0288 0.8314 0.2669 0.078*
C8 0.7964 (4) 0.3284 (3) 0.50488 (13) 0.0752 (10)
H8A 0.9086 0.3126 0.4867 0.113*
H8B 0.7905 0.2631 0.5330 0.113*
H8C 0.7954 0.4236 0.5178 0.113*
C17 −0.4527 (5) 0.6764 (4) 0.23138 (14) 0.1018 (13)
H17A −0.3987 0.7341 0.2054 0.153*
H17B −0.5856 0.6790 0.2274 0.153*
H17C −0.4103 0.5805 0.2280 0.153*
C19 −0.0808 (5) 0.9695 (3) 0.31823 (14) 0.0801 (11)
H19A −0.0146 1.0500 0.3056 0.120*
H19B −0.0154 0.9316 0.3478 0.120*
H19C −0.2031 0.9981 0.3276 0.120*
C1 0.7411 (5) −0.3221 (3) 0.44663 (14) 0.0798 (11)
H1A 0.7206 −0.3257 0.4101 0.120*
H1B 0.6296 −0.3496 0.4633 0.120*
H1C 0.8399 −0.3857 0.4565 0.120*
H1 0.388 (5) 0.462 (3) 0.3860 (14) 0.114 (15)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0442 (12) 0.0605 (14) 0.0867 (17) −0.0032 (10) −0.0064 (11) 0.0111 (12)
N1 0.0546 (14) 0.0542 (15) 0.0494 (14) 0.0062 (11) −0.0060 (12) 0.0042 (11)
O3 0.0689 (14) 0.0558 (13) 0.0934 (17) 0.0147 (11) −0.0204 (13) −0.0056 (11)
C13 0.0443 (15) 0.0474 (16) 0.0449 (16) 0.0009 (12) 0.0014 (13) 0.0003 (12)
C14 0.0436 (15) 0.0456 (16) 0.0580 (17) −0.0044 (12) 0.0028 (13) 0.0070 (13)
O2 0.0654 (13) 0.0550 (13) 0.0735 (15) 0.0015 (10) −0.0157 (12) −0.0042 (10)
C12 0.0437 (15) 0.0492 (17) 0.0631 (19) −0.0033 (13) −0.0024 (14) −0.0031 (14)
C10 0.0467 (15) 0.0437 (15) 0.0470 (16) 0.0012 (12) 0.0017 (13) 0.0017 (12)
N2 0.0472 (13) 0.0534 (15) 0.0654 (16) −0.0001 (11) −0.0068 (12) 0.0108 (12)
C15 0.0406 (15) 0.0517 (17) 0.0486 (16) −0.0010 (13) 0.0019 (12) 0.0009 (13)
C11 0.0457 (15) 0.0483 (16) 0.0568 (18) −0.0046 (13) 0.0029 (14) 0.0003 (13)
C9 0.0490 (16) 0.0515 (17) 0.0509 (17) −0.0007 (13) 0.0031 (14) 0.0018 (13)
C7 0.0530 (17) 0.0609 (19) 0.0510 (18) 0.0062 (15) −0.0087 (14) −0.0018 (14)
C5 0.0474 (16) 0.0502 (17) 0.0493 (17) 0.0055 (13) −0.0031 (13) 0.0036 (13)
C16 0.0574 (19) 0.0621 (19) 0.068 (2) 0.0029 (15) −0.0073 (16) 0.0068 (16)
C2 0.0499 (17) 0.0593 (19) 0.0557 (18) 0.0098 (14) −0.0001 (14) 0.0012 (14)
C4 0.0554 (18) 0.0647 (19) 0.0470 (17) 0.0034 (15) −0.0088 (14) 0.0001 (14)
C6 0.0524 (16) 0.0502 (17) 0.0487 (17) 0.0023 (14) −0.0002 (14) 0.0012 (13)
C3 0.0610 (18) 0.0526 (17) 0.0556 (18) 0.0064 (15) −0.0049 (15) −0.0051 (14)
C18 0.065 (2) 0.0584 (19) 0.072 (2) −0.0051 (16) −0.0003 (17) 0.0217 (16)
C8 0.073 (2) 0.072 (2) 0.080 (2) −0.0082 (18) −0.021 (2) −0.0065 (18)
C17 0.102 (3) 0.118 (3) 0.084 (3) −0.020 (3) −0.024 (2) −0.003 (2)
C19 0.077 (2) 0.060 (2) 0.102 (3) −0.0080 (18) −0.012 (2) 0.0009 (19)
C1 0.078 (2) 0.060 (2) 0.101 (3) 0.0154 (18) −0.006 (2) −0.0072 (19)

Geometric parameters (Å, º)

O1—C15 1.352 (3) C5—C4 1.381 (4)
O1—H1 0.843 (18) C5—C6 1.401 (3)
N1—C9 1.302 (3) C16—C17 1.507 (4)
N1—C5 1.418 (3) C16—H16A 0.9700
O3—C2 1.371 (3) C16—H16B 0.9700
O3—C1 1.420 (3) C2—C3 1.376 (4)
C13—N2 1.372 (3) C4—C3 1.390 (3)
C13—C14 1.403 (3) C4—H4 0.9300
C13—C12 1.423 (3) C3—H3 0.9300
C14—C15 1.383 (3) C18—C19 1.511 (4)
C14—H14 0.9300 C18—H18A 0.9700
O2—C6 1.365 (3) C18—H18B 0.9700
O2—C8 1.424 (3) C8—H8A 0.9600
C12—C11 1.362 (3) C8—H8B 0.9600
C12—H12 0.9300 C8—H8C 0.9600
C10—C11 1.410 (3) C17—H17A 0.9600
C10—C15 1.410 (3) C17—H17B 0.9600
C10—C9 1.430 (3) C17—H17C 0.9600
N2—C18 1.456 (3) C19—H19A 0.9600
N2—C16 1.465 (3) C19—H19B 0.9600
C11—H11 0.9300 C19—H19C 0.9600
C9—H9 0.9300 C1—H1A 0.9600
C7—C6 1.384 (3) C1—H1B 0.9600
C7—C2 1.389 (4) C1—H1C 0.9600
C7—H7 0.9300
C15—O1—H1 105 (3) O3—C2—C7 114.9 (2)
C9—N1—C5 121.7 (2) C3—C2—C7 120.5 (3)
C2—O3—C1 117.1 (2) C5—C4—C3 122.3 (3)
N2—C13—C14 121.2 (2) C5—C4—H4 118.8
N2—C13—C12 121.5 (2) C3—C4—H4 118.8
C14—C13—C12 117.3 (2) O2—C6—C7 124.2 (2)
C15—C14—C13 121.5 (2) O2—C6—C5 115.8 (2)
C15—C14—H14 119.2 C7—C6—C5 119.9 (2)
C13—C14—H14 119.2 C2—C3—C4 118.6 (3)
C6—O2—C8 117.7 (2) C2—C3—H3 120.7
C11—C12—C13 121.0 (2) C4—C3—H3 120.7
C11—C12—H12 119.5 N2—C18—C19 113.1 (3)
C13—C12—H12 119.5 N2—C18—H18A 109.0
C11—C10—C15 117.1 (2) C19—C18—H18A 109.0
C11—C10—C9 121.2 (2) N2—C18—H18B 109.0
C15—C10—C9 121.6 (2) C19—C18—H18B 109.0
C13—N2—C18 122.2 (2) H18A—C18—H18B 107.8
C13—N2—C16 121.9 (2) O2—C8—H8A 109.5
C18—N2—C16 115.8 (2) O2—C8—H8B 109.5
O1—C15—C14 118.2 (2) H8A—C8—H8B 109.5
O1—C15—C10 120.8 (2) O2—C8—H8C 109.5
C14—C15—C10 121.0 (2) H8A—C8—H8C 109.5
C12—C11—C10 122.1 (3) H8B—C8—H8C 109.5
C12—C11—H11 119.0 C16—C17—H17A 109.5
C10—C11—H11 119.0 C16—C17—H17B 109.5
N1—C9—C10 121.6 (3) H17A—C17—H17B 109.5
N1—C9—H9 119.2 C16—C17—H17C 109.5
C10—C9—H9 119.2 H17A—C17—H17C 109.5
C6—C7—C2 120.4 (3) H17B—C17—H17C 109.5
C6—C7—H7 119.8 C18—C19—H19A 109.5
C2—C7—H7 119.8 C18—C19—H19B 109.5
C4—C5—C6 118.3 (2) H19A—C19—H19B 109.5
C4—C5—N1 123.2 (2) C18—C19—H19C 109.5
C6—C5—N1 118.3 (2) H19A—C19—H19C 109.5
N2—C16—C17 112.9 (3) H19B—C19—H19C 109.5
N2—C16—H16A 109.0 O3—C1—H1A 109.5
C17—C16—H16A 109.0 O3—C1—H1B 109.5
N2—C16—H16B 109.0 H1A—C1—H1B 109.5
C17—C16—H16B 109.0 O3—C1—H1C 109.5
H16A—C16—H16B 107.8 H1A—C1—H1C 109.5
O3—C2—C3 124.6 (3) H1B—C1—H1C 109.5
N2—C13—C14—C15 179.7 (3) C13—N2—C16—C17 −95.4 (3)
C12—C13—C14—C15 −0.4 (4) C18—N2—C16—C17 88.7 (3)
N2—C13—C12—C11 −179.3 (3) C1—O3—C2—C3 −5.4 (5)
C14—C13—C12—C11 0.8 (4) C1—O3—C2—C7 175.1 (3)
C14—C13—N2—C18 5.4 (4) C6—C7—C2—O3 179.7 (3)
C12—C13—N2—C18 −174.5 (3) C6—C7—C2—C3 0.1 (5)
C14—C13—N2—C16 −170.3 (3) C6—C5—C4—C3 1.3 (4)
C12—C13—N2—C16 9.8 (4) N1—C5—C4—C3 176.3 (3)
C13—C14—C15—O1 −179.5 (2) C8—O2—C6—C7 1.1 (4)
C13—C14—C15—C10 0.4 (4) C8—O2—C6—C5 178.9 (3)
C11—C10—C15—O1 179.1 (3) C2—C7—C6—O2 177.3 (3)
C9—C10—C15—O1 −4.5 (4) C2—C7—C6—C5 −0.4 (5)
C11—C10—C15—C14 −0.8 (4) C4—C5—C6—O2 −178.1 (3)
C9—C10—C15—C14 175.6 (3) N1—C5—C6—O2 6.6 (4)
C13—C12—C11—C10 −1.2 (4) C4—C5—C6—C7 −0.2 (4)
C15—C10—C11—C12 1.2 (4) N1—C5—C6—C7 −175.5 (3)
C9—C10—C11—C12 −175.2 (3) O3—C2—C3—C4 −178.6 (3)
C5—N1—C9—C10 −169.8 (2) C7—C2—C3—C4 0.9 (5)
C11—C10—C9—N1 176.0 (3) C5—C4—C3—C2 −1.6 (5)
C15—C10—C9—N1 −0.2 (4) C13—N2—C18—C19 −86.8 (3)
C9—N1—C5—C4 33.2 (4) C16—N2—C18—C19 89.1 (3)
C9—N1—C5—C6 −151.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.84 (2) 1.79 (2) 2.575 (3) 153 (4)
C16—H16B···O1i 0.97 2.53 3.491 (4) 172

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2055).

References

  1. Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. C, 6, 207–226.
  2. Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1826. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Ha, K. (2011). Acta Cryst. E67, o518. [DOI] [PMC free article] [PubMed]
  7. Oxford Diffraction (2007). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  8. Schmidt, G. M. J. & Cohen, M. D. (1964). J. Chem. Soc. pp. 1996–2000.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201882X/ld2055sup1.cif

e-68-o1587-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201882X/ld2055Isup2.hkl

e-68-o1587-Isup2.hkl (200KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201882X/ld2055Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES