Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 2;68(Pt 6):o1590–o1591. doi: 10.1107/S1600536812018879

10-(Prop-2-yn-1-yl)-2,7-diaza­phenothia­zine1

Beata Morak-Młodawska a, Kinga Suwińska b,c, Krystian Pluta a,*, Małgorzata Jeleń a
PMCID: PMC3379202  PMID: 22719400

Abstract

In the title mol­ecule [systematic name: 10-(prop-2-yn-1-yl)dipyrido[3,4-b:3′,4′-e][1,4]thia­zine], C13H9N3S, the dihedral angle between the two pyridine rings is 146.33 (7)° and the angle between two halves of the thia­zine ring is 138.84 (8)°, resulting in a butterfly shape for the tricyclic system. The central thia­zine ring adopts a boat conformation, with the 2-propynyl substituent at the thia­zine N atom located in a pseudo-equatorial position and oriented to the concave side of the diaza­phenothia­zine system. In the crystal, mol­ecules are arranged via π–π inter­actions between the pyridine rings [centroid–centroid distances = 3.838 (1) and 3.845 (1) Å] into stacks extending along [001]. There are C—H⋯C and C—H⋯N inter­actions between mol­ecules of neighbouring stacks.

Related literature  

For recent literature on the biological activity of phenothia­zines, see: Aaron et al. (2009); Pluta et al. (2011). For the structure of 10-(2-propyn­yl)phenothia­zine and its transformations into anti­cancer derivatives, see: Bisi et al. (2008). For the synthesis and the anti­cancer and immunosuppressive activity of 2,7-diaza­phenothia­zines, see: Morak-Młodawska & Pluta (2009); Zimecki et al. (2009); Pluta et al. (2010). For planar and folded structures of the 2,7-diaza­phenothia­zine system, see: Morak et al. (2002); Morak-Młodawska et al. (2010). For alkyl­ation of aza­phenothia­zines, see: Pluta et al. (2009).graphic file with name e-68-o1590-scheme1.jpg

Experimental  

Crystal data  

  • C13H9N3S

  • M r = 239.29

  • Monoclinic, Inline graphic

  • a = 14.1150 (9) Å

  • b = 10.1909 (6) Å

  • c = 7.6749 (5) Å

  • β = 104.212 (3)°

  • V = 1070.20 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.60 × 0.50 × 0.35 mm

Data collection  

  • Nonius KappaCCD diffractometer upgraded with APEXII detector

  • 7015 measured reflections

  • 2407 independent reflections

  • 2011 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.114

  • S = 1.11

  • 2407 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018879/gk2475sup1.cif

e-68-o1590-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018879/gk2475Isup2.hkl

e-68-o1590-Isup2.hkl (118.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018879/gk2475Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.95 2.62 3.457 (3) 147
C13—H13⋯C11ii 0.95 2.78 3.677 (3) 159
C13—H13⋯C12ii 0.95 2.78 3.686 (3) 161
C3—H3⋯C13i 0.95 2.78 3.662 (3) 155
C8—H8⋯C13iii 0.95 2.69 3.407 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The work was supported by the Medical University of Silesia (grant KNW-1–073/P/1/0).

supplementary crystallographic information

Comment

Phenothiazines exhibit not only recognized neuroleptic, antihistaminic and antitussive activities but recently also anticancer, antibacterial and reversal multidrug resistance [Aaron et al., (2009); Pluta et al., (2011)]. The modifications of the phenothiazine structures are mainly directed into the introduction of new pharmacophoric substituents at the thiazine nitrogen atom and the substitution of the benzene ring with an azine ring (Pluta et al., 2009, 2011). Synthesis of substituted 10-(2-propynyl)phenothiazines and their transformations into various aminobutynyl derivatives of anticancer and multidrug resistance reverting activities was reported by Bisi et al. (2008). We modified the phenothiazine structure via the substitution of the benzene ring with the pyridine ring to form 2,7-diazaphenothiazines (Morak-Młodawska & Pluta, 2009) possessing anticancer and immunosuppressive activities (Zimecki et al., 2009; Pluta et al. 2010). Alkylation of azaphenothiazines proceeds at the thiazine and/or the azine nitrogen atoms, depending on the reaction conditions (Pluta et al., 2009). N-Alkylation of 10H-2,7-diazaphenothiazine led to both types of the products showing planar and folded 2,7-diazaphenothiazine ring system (Morak-Młodawska et al., 2010). 10H-2,7-Diazaphenothiazine was transformed into the title compound, C13H9N3S, a convenient substrate to other 2,7-diazaphenothiazine derivatives using aminomethylation or 1,3-dipolar cycloaddition. The X-ray study showed the propynyl group to be attached to the thiazine nitrogen atom. In the molecule, the butterfly angle between the two pyridine rings is 146.33 (7)° and the angle between two halves of the thiazine ring is 138.84 (8)°. The 2-propynyl substituent is in a pseudo-equatorial position with the angle S5···N10–C11 of 163.8 (2)° and directed to the concave side of the diazaphenothiazine system with the angle between the N10/C11/C12/C13 and C4a/C5a/C9a/C10a planes of 86.3 (1)°. The thiazine nitrogen atom shows pyramidality as the sum of the C–N10–C bond angles is 356.1 (1)°. Hydrogen bond C4–H4···N2 (Table 1) results in one-dimensional polymeric chain parallel to the b axis. Acidic hydrogen atom H13 is in close contact to C11 and C12 atoms of the propynyl substituent (both H···C distances equal to 2.78 Å). This suggests, that H13 is involved in C–H···C interactions to these two carbon atoms rather than in the C–H···π interaction to the π system of the triple C12≡C13 bond (H13···centerC12C13 distance of 2.96 Å ). Additionally, the C12≡ C13 bond π electrons interact with two aromatic H atoms (H3 and H8) of two other adjacent molecules with short C–H···C intermolecular contacts (less than the sum of van der Waals radii) between H3 and H8, and C13 (see Table 1). On the basis of these interactions a three-dimensional network is formed. Molecules π-stack along the c axis. Aromatic rings N2/C1/C10a/C4a/C4/C3 π-stack with centroid-to-centroid distance of 3.845 (1) Å, similarly, for rings N7/C6/C5A/C9A/C9/C8 the centroid-to-centroid distance is 3.838 (1) Å (see Figure 2).

Experimental

To a suspension of 10H-2,7-diazaphenothiazine (100 mg, 0.5 mmol) in 5 ml DMF potassium tert-butoxide (80 mg, 0.72 mmol) was added. The mixture was stirred at room temperature for 1 h. Then a solution of propargyl bromide (80 mg, 0.64 mmol) in toluene was added dropwise. The solution was stirred at room temperature for 24 h and poured into water (15 ml), extracted with methylene chloride (15 ml), dried with Na2SO4 and evaporated to the brown oil. The residue was purified by column chromatography (silica gel, CHCl3) to yield 10-(2-propynyl)-2,7-diazaphenothiazine (72 mg, 60%), mp. 149–150°C. 1H NMR in CDCl3: δ 2.57 (t, J = 2.5 Hz, 1H), 4.54(d, J = 2.5 Hz, 2H), 7.14 (m, 2H, H-9, H-4), 8.12 (s, 1H, H-1), 8.22 (d, J = 5.5 Hz, H-3), 8.35 (d, J = 5.5 Hz, H-8), 8.40 (s, 1H, H-6). FAB MS: 240 (M+H, 100), 201 (M—CH2CCH+1, 45).

Refinement

All H atoms in the were treated as riding atoms in geometrically idealized positions, with C–H distances of 0.95 (aromatic and acetylene) or 0.99 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP drawing with displacement ellipsoids shown at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing shown along the c axis.

Crystal data

C13H9N3S F(000) = 496
Mr = 239.29 Dx = 1.485 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2229 reflections
a = 14.1150 (9) Å θ = 2.5–27.5°
b = 10.1909 (6) Å µ = 0.28 mm1
c = 7.6749 (5) Å T = 100 K
β = 104.212 (3)° Block, yellow
V = 1070.20 (12) Å3 0.60 × 0.50 × 0.35 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer upgraded with APEXII detector 2011 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.041
Graphite monochromator θmax = 27.5°, θmin = 3.4°
Detector resolution: 8.3 pixels mm-1 h = −18→18
ω scan k = −12→13
7015 measured reflections l = −9→9
2407 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0285P)2 + 1.4885P] where P = (Fo2 + 2Fc2)/3
2407 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.92188 (15) 0.1074 (2) 0.5605 (3) 0.0172 (4)
H1 0.9145 0.0148 0.5522 0.021*
C3 1.01573 (17) 0.2865 (2) 0.6685 (3) 0.0218 (5)
H3 1.0762 0.3225 0.7335 0.026*
C4 0.94013 (16) 0.3721 (2) 0.5945 (3) 0.0195 (5)
H4 0.9479 0.4640 0.6135 0.023*
C4a 0.85325 (16) 0.3212 (2) 0.4927 (3) 0.0159 (4)
C5a 0.65940 (16) 0.3263 (2) 0.3914 (3) 0.0164 (4)
C6 0.57174 (16) 0.3834 (2) 0.4013 (3) 0.0197 (5)
H6 0.5703 0.4759 0.4161 0.024*
C8 0.49541 (17) 0.1852 (2) 0.3756 (3) 0.0226 (5)
H8 0.4377 0.1351 0.3665 0.027*
C9 0.58017 (16) 0.1180 (2) 0.3718 (3) 0.0192 (5)
H9 0.5801 0.0249 0.3640 0.023*
C9a 0.66564 (15) 0.1889 (2) 0.3797 (3) 0.0154 (4)
C10a 0.84271 (15) 0.1850 (2) 0.4757 (3) 0.0147 (4)
C11 0.75374 (17) −0.0072 (2) 0.3179 (3) 0.0182 (5)
H11a 0.8152 −0.0251 0.2819 0.022*
H11b 0.6992 −0.0198 0.2102 0.022*
C12 0.74397 (16) −0.1054 (2) 0.4530 (3) 0.0194 (5)
C13 0.73370 (18) −0.1884 (3) 0.5542 (4) 0.0284 (6)
H13 0.7254 −0.2552 0.6356 0.034*
S5 0.75938 (4) 0.42507 (5) 0.37659 (8) 0.01880 (16)
N2 1.00796 (13) 0.15579 (19) 0.6532 (3) 0.0204 (4)
N7 0.48877 (14) 0.3163 (2) 0.3912 (3) 0.0226 (4)
N10 0.75434 (13) 0.12936 (18) 0.3721 (2) 0.0158 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0160 (10) 0.0151 (10) 0.0217 (11) 0.0027 (8) 0.0071 (9) 0.0011 (8)
C3 0.0170 (11) 0.0228 (12) 0.0250 (12) −0.0042 (10) 0.0041 (9) −0.0051 (10)
C4 0.0194 (11) 0.0165 (10) 0.0244 (12) −0.0023 (9) 0.0085 (9) −0.0050 (9)
C4a 0.0165 (10) 0.0147 (10) 0.0178 (11) 0.0005 (8) 0.0070 (8) 0.0003 (8)
C5a 0.0176 (10) 0.0166 (10) 0.0142 (10) 0.0009 (8) 0.0025 (8) 0.0013 (8)
C6 0.0195 (11) 0.0186 (10) 0.0197 (11) 0.0028 (9) 0.0023 (9) −0.0007 (9)
C8 0.0168 (11) 0.0245 (12) 0.0250 (12) −0.0011 (9) 0.0024 (9) −0.0024 (10)
C9 0.0175 (10) 0.0170 (10) 0.0217 (11) −0.0004 (9) 0.0022 (9) −0.0013 (9)
C9a 0.0155 (10) 0.0156 (10) 0.0143 (10) 0.0027 (8) 0.0022 (8) −0.0005 (8)
C10a 0.0141 (10) 0.0144 (10) 0.0169 (11) −0.0017 (8) 0.0064 (8) 0.0000 (8)
C11 0.0199 (11) 0.0136 (10) 0.0218 (11) 0.0011 (9) 0.0064 (9) −0.0028 (9)
C12 0.0149 (10) 0.0177 (10) 0.0250 (12) 0.0000 (9) 0.0037 (9) −0.0034 (9)
C13 0.0256 (13) 0.0242 (12) 0.0360 (15) 0.0034 (10) 0.0086 (11) 0.0067 (11)
S5 0.0187 (3) 0.0143 (3) 0.0241 (3) 0.0015 (2) 0.0066 (2) 0.0035 (2)
N2 0.0131 (9) 0.0226 (10) 0.0248 (10) 0.0021 (8) 0.0033 (7) −0.0002 (8)
N7 0.0164 (9) 0.0244 (10) 0.0254 (11) 0.0039 (8) 0.0020 (8) −0.0014 (8)
N10 0.0119 (8) 0.0185 (9) 0.0167 (9) 0.0014 (7) 0.0030 (7) −0.0005 (7)

Geometric parameters (Å, º)

C1—N2 1.342 (3) C6—H6 0.9500
C1—C10a 1.393 (3) C8—N7 1.347 (3)
C1—H1 0.9500 C8—C9 1.385 (3)
C3—N2 1.339 (3) C8—H8 0.9500
C3—C4 1.387 (3) C9—C9a 1.395 (3)
C3—H3 0.9500 C9—H9 0.9500
C4—C4a 1.383 (3) C9a—N10 1.405 (3)
C4—H4 0.9500 C10a—N10 1.422 (3)
C4a—C10a 1.398 (3) C11—N10 1.452 (3)
C4a—S5 1.758 (2) C11—C12 1.471 (3)
C5a—C6 1.386 (3) C11—H11a 0.9900
C5a—C9a 1.407 (3) C11—H11b 0.9900
C5a—S5 1.760 (2) C12—C13 1.181 (3)
C6—N7 1.342 (3) C13—H13 0.9500
N2—C1—C10a 123.9 (2) C8—C9—H9 120.5
N2—C1—H1 118.1 C9a—C9—H9 120.5
C10a—C1—H1 118.1 C9—C9a—N10 122.98 (19)
N2—C3—C4 123.5 (2) C9—C9a—C5a 116.82 (19)
N2—C3—H3 118.3 N10—C9a—C5a 120.18 (19)
C4—C3—H3 118.3 C1—C10a—C4a 117.7 (2)
C4a—C4—C3 118.8 (2) C1—C10a—N10 121.87 (19)
C4a—C4—H4 120.6 C4a—C10a—N10 120.42 (19)
C3—C4—H4 120.6 N10—C11—C12 116.42 (19)
C4—C4a—C10a 119.0 (2) N10—C11—H11a 108.2
C4—C4a—S5 120.91 (17) C12—C11—H11a 108.2
C10a—C4a—S5 120.04 (17) N10—C11—H11b 108.2
C6—C5a—C9a 119.5 (2) C12—C11—H11b 108.2
C6—C5a—S5 120.26 (17) H11a—C11—H11b 107.3
C9a—C5a—S5 120.09 (16) C13—C12—C11 176.5 (3)
N7—C6—C5a 124.1 (2) C12—C13—H13 180.0
N7—C6—H6 117.9 C4a—S5—C5a 98.00 (10)
C5a—C6—H6 117.9 C3—N2—C1 117.1 (2)
N7—C8—C9 124.9 (2) C6—N7—C8 115.6 (2)
N7—C8—H8 117.6 C9a—N10—C10a 118.21 (18)
C9—C8—H8 117.6 C9a—N10—C11 118.89 (18)
C8—C9—C9a 119.0 (2) C10a—N10—C11 119.00 (18)
N2—C3—C4—C4a −2.9 (4) C4—C4a—S5—C5a −148.01 (19)
C3—C4—C4a—C10a 3.3 (3) C10a—C4a—S5—C5a 35.26 (19)
C3—C4—C4a—S5 −173.43 (17) C6—C5a—S5—C4a 148.16 (19)
C9a—C5a—C6—N7 −3.6 (4) C9a—C5a—S5—C4a −36.6 (2)
S5—C5a—C6—N7 171.68 (18) C4—C3—N2—C1 0.1 (3)
N7—C8—C9—C9a −1.8 (4) C10a—C1—N2—C3 2.2 (3)
C8—C9—C9a—N10 −178.4 (2) C5a—C6—N7—C8 1.9 (3)
C8—C9—C9a—C5a 0.1 (3) C9—C8—N7—C6 0.8 (4)
C6—C5a—C9a—C9 2.4 (3) C9—C9a—N10—C10a −144.8 (2)
S5—C5a—C9a—C9 −172.88 (17) C5a—C9a—N10—C10a 36.8 (3)
C6—C5a—C9a—N10 −179.1 (2) C9—C9a—N10—C11 12.8 (3)
S5—C5a—C9a—N10 5.6 (3) C5a—C9a—N10—C11 −165.6 (2)
N2—C1—C10a—C4a −1.7 (3) C1—C10a—N10—C9a 142.9 (2)
N2—C1—C10a—N10 177.10 (19) C4a—C10a—N10—C9a −38.3 (3)
C4—C4a—C10a—C1 −1.2 (3) C1—C10a—N10—C11 −14.6 (3)
S5—C4a—C10a—C1 175.63 (16) C4a—C10a—N10—C11 164.16 (19)
C4—C4a—C10a—N10 179.98 (19) C12—C11—N10—C9a −76.0 (3)
S5—C4a—C10a—N10 −3.2 (3) C12—C11—N10—C10a 81.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···N2i 0.95 2.62 3.457 (3) 147
C13—H13···C11ii 0.95 2.78 3.677 (3) 159
C13—H13···C12ii 0.95 2.78 3.686 (3) 161
C3—H3···C13i 0.95 2.78 3.662 (3) 155
C8—H8···C13iii 0.95 2.69 3.407 (3) 133

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x, −y−1/2, z+1/2; (iii) −x+1, −y, −z+1.

Footnotes

1

Azinyl sulfides. Part CXXVII.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2475).

References

  1. Aaron, J. J., Gaye Seye, M. D., Trajkovska, S. & Motohashi, N. (2009). Top. Heterocycl. Chem 16, 153–231.
  2. Bisi, A., Meli, M., Gobbi, S., Rampa, A., Tolomeo, M. & Dusonchet, L. (2008). Bioorg. Med. Chem. 16, 6474–6482. [DOI] [PubMed]
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Morak, B., Pluta, K. & Suwińska, K. (2002). Heterocycl. Commun. 8, 331–334.
  6. Morak-Młodawska, B. & Pluta, K. (2009). Heterocycles, 78, 1289–1298.
  7. Morak-Młodawska, B., Pluta, K., Suwińska, K. & Jeleń, M. (2010). Heterocycles, 81, 2511–2522.
  8. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Pluta, K., Jeleń, M., Morak-Młodawska, B., Zimecki, M., Artym, J. & Kocięba, M. (2010). Pharmacol. Rep. 62, 319–332. [DOI] [PubMed]
  11. Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). J. Heterocycl. Chem. 46, 355–391.
  12. Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2011). Eur. J. Med. Chem. 46, 3179–3189. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Zimecki, M., Artym, J., Kocięba, M., Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). Cell. Mol. Biol. Lett. 14, 622–635. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018879/gk2475sup1.cif

e-68-o1590-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018879/gk2475Isup2.hkl

e-68-o1590-Isup2.hkl (118.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018879/gk2475Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES