Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 2;68(Pt 6):o1592–o1593. doi: 10.1107/S1600536812018582

Brusatol

Shu-Zhi Hu a, Lu Jin a, Tong Yu a, Hai-Yan Tian a, Ren-Wang Jiang a,*
PMCID: PMC3379203  PMID: 22719401

Abstract

The title compound, C26H32O11, is composed of an α,β-unsaturated cyclo­hexa­none ring (A), two cyclo­hexane rings (B and C), a six-membered lactone ring (D) and tetra­hydro­furan ring (E). Ring A exists in a half-chair conformation with a C atom displaced by 0.679 (2) Å from the mean plane through the remaining five atoms. Ring B exists in a normal chair conformation. Both rings C and D exist in a twisted-chair conformation due to the O-atom bridge and the carbonyl group in rings C and D, respectively. Ring E shows an envelope conformation with a C atom displaced by 0.761 (1) Å from the mean plane through the remaining five atoms. The ring junctions are A/B trans, B/C trans, C/D cis and D/E cis. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, O—H⋯O hydrogen bonds involving the hy­droxy, lactone and ester groups and C—H⋯O inter­actions are observed.

Related literature  

For the isolation of brusatol, see: Sim et al. (1968); Kim et al. (2004). For its anti­cancer activity, see: Zhao et al. (2011) and for its anti­viral activity, see: Yan et al. (2010). For the enhancement of the efficacy for chemotherapy, see: Ren et al. (2011). For the crystal structure of bruceine A, see: Feng et al. 2010. For the absolute configuration of simalikalactone D, see: Moher et al. (1992).graphic file with name e-68-o1592-scheme1.jpg

Experimental  

Crystal data  

  • C26H32O11

  • M r = 520.52

  • Orthorhombic, Inline graphic

  • a = 6.7162 (1) Å

  • b = 13.6796 (2) Å

  • c = 25.9859 (5) Å

  • V = 2387.45 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.96 mm−1

  • T = 288 K

  • 0.44 × 0.15 × 0.11 mm

Data collection  

  • Oxford Gemini S Ultra Sapphire CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.748, T max = 1.000

  • 4961 measured reflections

  • 3380 independent reflections

  • 3182 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.085

  • S = 1.03

  • 3380 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983), 1167 Friedel pairs

  • Flack parameter: −0.07 (19)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018582/vm2168sup1.cif

e-68-o1592-sup1.cif (28.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018582/vm2168Isup2.hkl

e-68-o1592-Isup2.hkl (165.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 2.17 2.629 (3) 116
O3—H3A⋯O11i 0.82 2.09 2.911 (2) 173
O4—H4A⋯O9ii 0.82 2.41 3.180 (2) 157
O4—H4A⋯O8ii 0.82 2.33 3.066 (2) 149
C11—H11A⋯O9ii 0.98 2.54 3.368 (4) 142
C5′—H5′B⋯O1iii 0.96 2.76 3.650 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by grants from the New Century Excellent Talents Scheme of the Ministry of Education (NCET-08–0612), the National Science Foundation of China (21072078), the Guangdong High Level Talent Scheme and the Fundamental Research Funds for the Central Universities (21609202).

supplementary crystallographic information

Comment

The title compound brusatol is a natural product originally isolated from the seeds of Brucea sumatrana (Sim et al., 1968). It was also isolated from the chinese herbal medicine Brucea javanica (Kim et al., 2004). Brusatol was found to show potent anticancer activity (Zhao et al., 2011) and antiviral activity against the tobaccomosaic virus (Yan et al., 2010). Furthermore, it was reported that brusatol could effectively enhance the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism (Ren et al., 2011). The crystal strcuture of bruceine A, an analogue of brusatol, was reported recently (Feng et al., 2010); however, no detailed structural information was provided. We report herein the three-dimensional structure of the title compound.

Brusatol consists of an α,β-unsaturated cyclohexanone ring (A), two cyclohexane rings (B and C), a six-membered lactone ring (D) and tetrahydrofuran ring (E). Ring A exists in a half chair conformation with C10 displaced by 0.679 (2) Å from the least squares plane through the remaining five atoms (C1, C2, C3, C4 and C5). Ring B exists in a normal chair conformation. Both rings C and D exist in a twisted chair conformation due to the oxygen bridge and carbonyl group in rings C and D, respectively. Ring E shows an envelop conformation with C14 displaced by 0.761 (1) Å from the least squares plane through the remaining four atoms (C8, C13, C20 and O7). The planes through rings A and E are roughly perpendicular to each other with a dihedral angle of 86.15 (9)°. There are two side chains at C13 and C15. The planes through the two ester groups in the side chains make a dihedral angle of 62.36 (10). The ring junctures are A/B trans, B/C trans, C/D cis and D/E cis. The absolute configuration determined for simalikalactone D (Moher et al., 1992), a similar quassinoid, was invoked, giving the assignments of the chiral centres in the molecule as shown in Fig. 1.

Intermolecular O–H···O hydrogen bonds (Table 1) between the hydroxyl groups at C11 and the ester group at C1' [O3···O11i = 2.911 (2) Å, symmetry code: (i) -x, 0.5 + y, 0.5 - z], between the hydroxyl group at C12 and the lactone group at C16 [O4···O8ii = 3.066 (2) Å and O4···O9ii = 3.180 (2) Å, symmetry code: (ii) 1 - x, 0.5 + y, 0.5 - z], and short C–H···O contacts between the methine group at C11 and the lactone group at C16 [C11···O9ii = 3.368 (4) Å] link adjacent molecules into chains along the b-axis. Adjacent chains are further linked by weak C–H···O interactions between the terminal methyl group and the ketone group at C2 [C5'···O1iii = 3.650 (3) Å, symmetry code: (iii) 0.5 - x, 1 - y, 0.5 + z] into a three-dimensional network (Fig. 2).

Experimental

Dried seeds of brucea javanica (10 kg) were milled and extracted with 95% ethanol at room temperature and the extracted solution were concentrated to afford a syrup. The crude syrup was suspended in distilled water and partitioned with petroleum ether, ethyl acetate and n-butanol, successively. The ethyl acetate extract (82 g) was dissolved in warm methanol. After cooling, the raw brusatol precipitated as white powder. Then the powder (100 mg) was subjected to reverse phase HPLC to afford pure brusatol (83 mg). Colorless needles of the title compound were crystallized directly from the HPLC eluate acetonitrile: water 45:55.

Refinement

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The absolute configuration can be unambiguously assigned with reference to the known configuration of the closed related compound simalikalactone D. The Flack parameter was refined to -0.07 (19).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram viewed down the a axis. The dashed lines represent intermolecular O—H···O hydrogen bonds and C—H···O short contacts. Selected H-atoms highlighting the hydrogen bondings and short contacts are shown.

Crystal data

C26H32O11 Dx = 1.448 Mg m3
Mr = 520.52 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121 Cell parameters from 2860 reflections
a = 6.7162 (1) Å θ = 3.2–62.6°
b = 13.6796 (2) Å µ = 0.96 mm1
c = 25.9859 (5) Å T = 288 K
V = 2387.45 (7) Å3 Needle, colourless
Z = 4 0.44 × 0.15 × 0.11 mm
F(000) = 1104

Data collection

Oxford Gemini S Ultra Sapphire CCD diffractometer 3380 independent reflections
Radiation source: fine-focus sealed tube 3182 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.020
ω scan θmax = 62.6°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) h = −7→6
Tmin = 0.748, Tmax = 1.000 k = −13→15
4961 measured reflections l = −29→29

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.5393P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.27 e Å3
3380 reflections Δρmin = −0.18 e Å3
338 parameters Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0070 (4)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1167 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.07 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6704 (3) 0.54720 (14) 0.02225 (7) 0.0561 (6)
O2 0.7863 (3) 0.37039 (16) −0.00367 (7) 0.0551 (5)
H2A 0.7975 0.4234 −0.0181 0.094 (15)*
O3 0.0404 (3) 0.54519 (13) 0.14364 (6) 0.0441 (5)
H3A −0.0296 0.5919 0.1516 0.080 (12)*
O4 0.2361 (3) 0.56662 (12) 0.27424 (6) 0.0411 (4)
H4A 0.2887 0.6182 0.2656 0.069 (11)*
O5 −0.2473 (3) 0.51540 (14) 0.30530 (8) 0.0653 (6)
O6 −0.0670 (2) 0.39701 (16) 0.34093 (6) 0.0505 (5)
O7 −0.1327 (2) 0.40828 (12) 0.21639 (6) 0.0342 (4)
O8 0.4711 (2) 0.23809 (11) 0.21922 (6) 0.0349 (4)
O9 0.6417 (3) 0.25571 (13) 0.28957 (6) 0.0424 (4)
O10 0.3429 (2) 0.35608 (10) 0.33806 (5) 0.0281 (3)
O11 0.2397 (3) 0.20076 (11) 0.33187 (6) 0.0389 (4)
C1 0.5140 (4) 0.50092 (16) 0.10202 (8) 0.0332 (5)
H1A 0.4364 0.5605 0.0990 0.040*
H1B 0.6112 0.5104 0.1292 0.040*
C2 0.6203 (4) 0.48223 (18) 0.05223 (9) 0.0377 (6)
C3 0.6762 (4) 0.38148 (18) 0.04044 (9) 0.0370 (6)
C4 0.6333 (4) 0.30630 (17) 0.07122 (8) 0.0333 (5)
C5 0.5044 (3) 0.32145 (15) 0.11842 (8) 0.0273 (5)
H5A 0.5971 0.3306 0.1471 0.033*
C6 0.3745 (4) 0.23359 (15) 0.13322 (8) 0.0311 (5)
H6A 0.2654 0.2271 0.1090 0.037*
H6B 0.4532 0.1742 0.1319 0.037*
C7 0.2931 (3) 0.24785 (15) 0.18675 (8) 0.0276 (5)
H7A 0.2018 0.1940 0.1946 0.033*
C8 0.1859 (3) 0.34436 (15) 0.19626 (8) 0.0237 (5)
C9 0.2988 (3) 0.43333 (15) 0.17275 (8) 0.0247 (5)
H9A 0.4203 0.4388 0.1934 0.030*
C10 0.3752 (3) 0.41578 (15) 0.11664 (8) 0.0256 (5)
C11 0.1883 (4) 0.53042 (16) 0.18209 (8) 0.0309 (5)
H11A 0.2859 0.5833 0.1788 0.037*
C12 0.0966 (3) 0.53777 (15) 0.23619 (8) 0.0293 (5)
H12A −0.0104 0.5864 0.2352 0.035*
C13 0.0083 (3) 0.44045 (16) 0.25471 (8) 0.0293 (5)
C14 0.1578 (3) 0.35654 (15) 0.25474 (8) 0.0236 (4)
H14A 0.0874 0.2983 0.2671 0.028*
C15 0.3574 (3) 0.35998 (15) 0.28264 (7) 0.0250 (4)
H15A 0.4201 0.4225 0.2738 0.030*
C16 0.4981 (4) 0.27969 (16) 0.26507 (8) 0.0299 (5)
C18 0.7205 (4) 0.2074 (2) 0.06165 (10) 0.0464 (7)
H18A 0.7984 0.2089 0.0307 0.070*
H18B 0.6152 0.1605 0.0580 0.070*
H18C 0.8038 0.1893 0.0901 0.070*
C19 0.2138 (4) 0.40703 (18) 0.07452 (8) 0.0340 (5)
H19A 0.2763 0.3965 0.0418 0.051*
H19B 0.1371 0.4662 0.0734 0.051*
H19C 0.1278 0.3530 0.0823 0.051*
C20 −0.0349 (3) 0.34250 (16) 0.18165 (8) 0.0302 (5)
H20A −0.0530 0.3637 0.1463 0.036*
H20B −0.0884 0.2770 0.1852 0.036*
C21 −0.1136 (4) 0.45655 (17) 0.30335 (9) 0.0355 (6)
C22 −0.1880 (5) 0.4031 (3) 0.38682 (10) 0.0779 (11)
H22A −0.1412 0.3565 0.4117 0.117*
H22B −0.3240 0.3889 0.3783 0.117*
H22C −0.1790 0.4677 0.4010 0.117*
C1' 0.2828 (3) 0.27079 (16) 0.35871 (8) 0.0308 (5)
C2' 0.2793 (4) 0.26745 (17) 0.41472 (8) 0.0365 (6)
H2'A 0.2646 0.2051 0.4284 0.044*
C3' 0.2934 (4) 0.33837 (18) 0.44969 (9) 0.0384 (6)
C4' 0.3105 (5) 0.44546 (19) 0.43916 (10) 0.0527 (7)
H4'A 0.3144 0.4562 0.4027 0.079*
H4'B 0.4305 0.4701 0.4545 0.079*
H4'C 0.1977 0.4788 0.4536 0.079*
C5' 0.2881 (5) 0.3129 (2) 0.50613 (9) 0.0623 (9)
H5'A 0.2802 0.2432 0.5100 0.093*
H5'B 0.1739 0.3427 0.5218 0.093*
H5'C 0.4070 0.3365 0.5225 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0727 (14) 0.0511 (11) 0.0444 (10) −0.0068 (11) 0.0227 (11) 0.0081 (9)
O2 0.0584 (12) 0.0674 (13) 0.0396 (10) −0.0005 (11) 0.0244 (9) −0.0064 (10)
O3 0.0530 (11) 0.0436 (10) 0.0356 (9) 0.0246 (9) −0.0004 (8) 0.0049 (7)
O4 0.0518 (10) 0.0336 (9) 0.0378 (9) −0.0135 (9) 0.0035 (8) −0.0034 (7)
O5 0.0682 (14) 0.0472 (11) 0.0805 (14) 0.0163 (11) 0.0418 (12) 0.0069 (10)
O6 0.0322 (9) 0.0896 (14) 0.0296 (8) 0.0093 (10) 0.0090 (8) 0.0096 (9)
O7 0.0231 (7) 0.0424 (9) 0.0372 (8) 0.0033 (7) −0.0018 (7) −0.0045 (7)
O8 0.0376 (9) 0.0365 (8) 0.0308 (8) 0.0146 (8) −0.0027 (8) −0.0025 (7)
O9 0.0359 (9) 0.0523 (10) 0.0388 (9) 0.0117 (8) −0.0061 (8) 0.0073 (8)
O10 0.0336 (8) 0.0287 (8) 0.0219 (7) −0.0042 (7) −0.0026 (7) 0.0022 (6)
O11 0.0555 (11) 0.0297 (8) 0.0314 (8) −0.0101 (8) −0.0033 (8) −0.0006 (7)
C1 0.0356 (12) 0.0338 (12) 0.0301 (11) −0.0011 (11) 0.0055 (10) −0.0005 (9)
C2 0.0378 (13) 0.0440 (14) 0.0311 (12) −0.0058 (12) 0.0058 (11) 0.0008 (11)
C3 0.0319 (12) 0.0496 (15) 0.0295 (11) 0.0001 (11) 0.0092 (10) −0.0069 (11)
C4 0.0285 (11) 0.0406 (13) 0.0307 (11) 0.0020 (11) −0.0014 (11) −0.0105 (11)
C5 0.0256 (11) 0.0306 (11) 0.0259 (10) 0.0027 (10) −0.0019 (10) −0.0041 (9)
C6 0.0355 (12) 0.0257 (11) 0.0321 (11) 0.0020 (11) 0.0011 (11) −0.0056 (9)
C7 0.0275 (11) 0.0249 (10) 0.0303 (11) −0.0003 (9) −0.0016 (10) −0.0014 (9)
C8 0.0234 (11) 0.0241 (11) 0.0235 (10) −0.0005 (9) 0.0000 (9) −0.0037 (8)
C9 0.0257 (10) 0.0254 (10) 0.0230 (10) −0.0007 (9) −0.0004 (9) −0.0014 (8)
C10 0.0239 (10) 0.0283 (11) 0.0248 (11) 0.0021 (10) 0.0012 (9) −0.0004 (9)
C11 0.0362 (12) 0.0241 (10) 0.0323 (11) 0.0037 (10) 0.0055 (10) 0.0037 (9)
C12 0.0328 (12) 0.0235 (11) 0.0316 (11) 0.0052 (10) 0.0058 (10) 0.0007 (9)
C13 0.0266 (10) 0.0305 (12) 0.0307 (11) −0.0006 (10) 0.0038 (10) −0.0009 (9)
C14 0.0246 (10) 0.0229 (10) 0.0234 (10) −0.0025 (9) 0.0009 (9) 0.0010 (8)
C15 0.0271 (10) 0.0270 (10) 0.0209 (9) −0.0019 (9) −0.0010 (9) 0.0042 (9)
C16 0.0308 (12) 0.0301 (12) 0.0289 (11) 0.0009 (10) 0.0015 (10) 0.0068 (9)
C18 0.0416 (14) 0.0490 (15) 0.0487 (15) 0.0056 (13) 0.0082 (13) −0.0169 (12)
C19 0.0337 (12) 0.0423 (13) 0.0260 (11) 0.0037 (12) −0.0039 (10) −0.0007 (10)
C20 0.0257 (11) 0.0352 (12) 0.0299 (11) −0.0013 (10) −0.0024 (10) −0.0015 (9)
C21 0.0325 (12) 0.0319 (12) 0.0421 (13) −0.0048 (11) 0.0101 (11) −0.0058 (11)
C22 0.0446 (17) 0.157 (4) 0.0324 (15) 0.009 (2) 0.0143 (13) 0.0076 (19)
C1' 0.0333 (12) 0.0300 (12) 0.0291 (11) −0.0013 (11) 0.0003 (10) 0.0034 (10)
C2' 0.0463 (14) 0.0349 (12) 0.0284 (11) 0.0027 (12) −0.0004 (11) 0.0069 (10)
C3' 0.0368 (13) 0.0484 (14) 0.0299 (12) 0.0042 (12) −0.0002 (11) −0.0020 (11)
C4' 0.0618 (18) 0.0455 (15) 0.0508 (16) −0.0112 (15) 0.0082 (15) −0.0182 (13)
C5' 0.081 (2) 0.077 (2) 0.0292 (13) 0.019 (2) −0.0019 (15) −0.0030 (14)

Geometric parameters (Å, º)

O1—C2 1.229 (3) C9—C11 1.541 (3)
O2—C3 1.372 (3) C9—C10 1.564 (3)
O2—H2A 0.8200 C9—H9A 0.9800
O3—C11 1.423 (3) C10—C19 1.545 (3)
O3—H3A 0.8200 C11—C12 1.538 (3)
O4—C12 1.418 (3) C11—H11A 0.9800
O4—H4A 0.8200 C12—C13 1.535 (3)
O5—C21 1.207 (3) C12—H12A 0.9800
O6—C21 1.310 (3) C13—C21 1.522 (3)
O6—C22 1.445 (3) C13—C14 1.525 (3)
O7—C20 1.434 (3) C14—C15 1.525 (3)
O7—C13 1.443 (3) C14—H14A 0.9800
O8—C16 1.333 (3) C15—C16 1.519 (3)
O8—C7 1.469 (3) C15—H15A 0.9800
O9—C16 1.201 (3) C18—H18A 0.9600
O10—C1' 1.346 (3) C18—H18B 0.9600
O10—C15 1.444 (2) C18—H18C 0.9600
O11—C1' 1.220 (3) C19—H19A 0.9600
C1—C2 1.500 (3) C19—H19B 0.9600
C1—C10 1.539 (3) C19—H19C 0.9600
C1—H1A 0.9700 C20—H20A 0.9700
C1—H1B 0.9700 C20—H20B 0.9700
C2—C3 1.461 (3) C22—H22A 0.9600
C3—C4 1.334 (3) C22—H22B 0.9600
C4—C18 1.495 (3) C22—H22C 0.9600
C4—C5 1.516 (3) C1'—C2' 1.456 (3)
C5—C6 1.534 (3) C2'—C3' 1.333 (3)
C5—C10 1.556 (3) C2'—H2'A 0.9300
C5—H5A 0.9800 C3'—C4' 1.495 (4)
C6—C7 1.507 (3) C3'—C5' 1.508 (3)
C6—H6A 0.9700 C4'—H4'A 0.9600
C6—H6B 0.9700 C4'—H4'B 0.9600
C7—C8 1.524 (3) C4'—H4'C 0.9600
C7—H7A 0.9800 C5'—H5'A 0.9600
C8—C20 1.531 (3) C5'—H5'B 0.9600
C8—C14 1.540 (3) C5'—H5'C 0.9600
C8—C9 1.559 (3)
C3—O2—H2A 109.5 O7—C13—C21 105.32 (18)
C11—O3—H3A 109.5 O7—C13—C14 101.70 (16)
C12—O4—H4A 109.5 C21—C13—C14 117.56 (19)
C21—O6—C22 116.4 (2) O7—C13—C12 107.57 (17)
C20—O7—C13 108.99 (16) C21—C13—C12 110.05 (18)
C16—O8—C7 125.83 (17) C14—C13—C12 113.48 (18)
C1'—O10—C15 116.72 (16) C15—C14—C13 123.77 (18)
C2—C1—C10 111.86 (18) C15—C14—C8 111.37 (17)
C2—C1—H1A 109.2 C13—C14—C8 99.31 (16)
C10—C1—H1A 109.2 C15—C14—H14A 107.1
C2—C1—H1B 109.2 C13—C14—H14A 107.1
C10—C1—H1B 109.2 C8—C14—H14A 107.1
H1A—C1—H1B 107.9 O10—C15—C16 108.35 (16)
O1—C2—C3 118.6 (2) O10—C15—C14 114.43 (17)
O1—C2—C1 123.6 (2) C16—C15—C14 112.44 (17)
C3—C2—C1 117.6 (2) O10—C15—H15A 107.1
C4—C3—O2 122.1 (2) C16—C15—H15A 107.1
C4—C3—C2 123.1 (2) C14—C15—H15A 107.1
O2—C3—C2 114.7 (2) O9—C16—O8 117.8 (2)
C3—C4—C18 120.9 (2) O9—C16—C15 122.5 (2)
C3—C4—C5 120.2 (2) O8—C16—C15 119.52 (18)
C18—C4—C5 118.8 (2) C4—C18—H18A 109.5
C4—C5—C6 114.88 (17) C4—C18—H18B 109.5
C4—C5—C10 114.09 (17) H18A—C18—H18B 109.5
C6—C5—C10 109.88 (17) C4—C18—H18C 109.5
C4—C5—H5A 105.7 H18A—C18—H18C 109.5
C6—C5—H5A 105.7 H18B—C18—H18C 109.5
C10—C5—H5A 105.7 C10—C19—H19A 109.5
C7—C6—C5 109.64 (17) C10—C19—H19B 109.5
C7—C6—H6A 109.7 H19A—C19—H19B 109.5
C5—C6—H6A 109.7 C10—C19—H19C 109.5
C7—C6—H6B 109.7 H19A—C19—H19C 109.5
C5—C6—H6B 109.7 H19B—C19—H19C 109.5
H6A—C6—H6B 108.2 O7—C20—C8 106.08 (17)
O8—C7—C6 102.92 (17) O7—C20—H20A 110.5
O8—C7—C8 111.71 (16) C8—C20—H20A 110.5
C6—C7—C8 115.66 (18) O7—C20—H20B 110.5
O8—C7—H7A 108.8 C8—C20—H20B 110.5
C6—C7—H7A 108.8 H20A—C20—H20B 108.7
C8—C7—H7A 108.8 O5—C21—O6 124.2 (2)
C7—C8—C20 113.77 (18) O5—C21—C13 122.1 (2)
C7—C8—C14 108.16 (17) O6—C21—C13 113.6 (2)
C20—C8—C14 97.32 (17) O6—C22—H22A 109.5
C7—C8—C9 112.53 (17) O6—C22—H22B 109.5
C20—C8—C9 112.77 (17) H22A—C22—H22B 109.5
C14—C8—C9 111.21 (16) O6—C22—H22C 109.5
C11—C9—C8 112.15 (17) H22A—C22—H22C 109.5
C11—C9—C10 115.92 (17) H22B—C22—H22C 109.5
C8—C9—C10 113.89 (16) O11—C1'—O10 121.61 (19)
C11—C9—H9A 104.5 O11—C1'—C2' 122.9 (2)
C8—C9—H9A 104.5 O10—C1'—C2' 115.5 (2)
C10—C9—H9A 104.5 C3'—C2'—C1' 131.1 (2)
C1—C10—C19 107.97 (17) C3'—C2'—H2'A 114.4
C1—C10—C5 107.28 (17) C1'—C2'—H2'A 114.4
C19—C10—C5 110.36 (17) C2'—C3'—C4' 126.4 (2)
C1—C10—C9 108.21 (17) C2'—C3'—C5' 119.6 (2)
C19—C10—C9 116.26 (18) C4'—C3'—C5' 114.0 (2)
C5—C10—C9 106.41 (16) C3'—C4'—H4'A 109.5
O3—C11—C12 110.70 (18) C3'—C4'—H4'B 109.5
O3—C11—C9 110.37 (17) H4'A—C4'—H4'B 109.5
C12—C11—C9 113.15 (17) C3'—C4'—H4'C 109.5
O3—C11—H11A 107.5 H4'A—C4'—H4'C 109.5
C12—C11—H11A 107.5 H4'B—C4'—H4'C 109.5
C9—C11—H11A 107.5 C3'—C5'—H5'A 109.5
O4—C12—C13 106.15 (17) C3'—C5'—H5'B 109.5
O4—C12—C11 113.04 (18) H5'A—C5'—H5'B 109.5
C13—C12—C11 112.62 (17) C3'—C5'—H5'C 109.5
O4—C12—H12A 108.3 H5'A—C5'—H5'C 109.5
C13—C12—H12A 108.3 H5'B—C5'—H5'C 109.5
C11—C12—H12A 108.3
C10—C1—C2—O1 149.1 (2) O3—C11—C12—C13 85.9 (2)
C10—C1—C2—C3 −34.3 (3) C9—C11—C12—C13 −38.6 (3)
O1—C2—C3—C4 178.2 (2) C20—O7—C13—C21 −148.07 (18)
C1—C2—C3—C4 1.5 (4) C20—O7—C13—C14 −24.9 (2)
O1—C2—C3—O2 1.5 (4) C20—O7—C13—C12 94.6 (2)
C1—C2—C3—O2 −175.2 (2) O4—C12—C13—O7 −179.23 (16)
O2—C3—C4—C18 6.0 (4) C11—C12—C13—O7 −55.0 (2)
C2—C3—C4—C18 −170.5 (2) O4—C12—C13—C21 66.5 (2)
O2—C3—C4—C5 −177.6 (2) C11—C12—C13—C21 −169.28 (19)
C2—C3—C4—C5 6.0 (4) O4—C12—C13—C14 −67.5 (2)
C3—C4—C5—C6 148.1 (2) C11—C12—C13—C14 56.6 (2)
C18—C4—C5—C6 −35.4 (3) O7—C13—C14—C15 170.06 (18)
C3—C4—C5—C10 19.9 (3) C21—C13—C14—C15 −75.6 (3)
C18—C4—C5—C10 −163.6 (2) C12—C13—C14—C15 54.8 (3)
C4—C5—C6—C7 166.34 (18) O7—C13—C14—C8 46.42 (19)
C10—C5—C6—C7 −63.4 (2) C21—C13—C14—C8 160.78 (19)
C16—O8—C7—C6 152.39 (19) C12—C13—C14—C8 −68.8 (2)
C16—O8—C7—C8 27.7 (3) C7—C8—C14—C15 61.3 (2)
C5—C6—C7—O8 −69.4 (2) C20—C8—C14—C15 179.31 (17)
C5—C6—C7—C8 52.7 (3) C9—C8—C14—C15 −62.8 (2)
O8—C7—C8—C20 −156.51 (17) C7—C8—C14—C13 −166.73 (17)
C6—C7—C8—C20 86.2 (2) C20—C8—C14—C13 −48.70 (19)
O8—C7—C8—C14 −49.6 (2) C9—C8—C14—C13 69.2 (2)
C6—C7—C8—C14 −166.86 (19) C1'—O10—C15—C16 −57.0 (2)
O8—C7—C8—C9 73.7 (2) C1'—O10—C15—C14 69.3 (2)
C6—C7—C8—C9 −43.6 (2) C13—C14—C15—O10 71.0 (3)
C7—C8—C9—C11 179.43 (18) C8—C14—C15—O10 −170.89 (16)
C20—C8—C9—C11 49.1 (2) C13—C14—C15—C16 −164.80 (18)
C14—C8—C9—C11 −59.0 (2) C8—C14—C15—C16 −46.7 (2)
C7—C8—C9—C10 45.3 (2) C7—O8—C16—O9 171.5 (2)
C20—C8—C9—C10 −85.0 (2) C7—O8—C16—C15 −13.0 (3)
C14—C8—C9—C10 166.82 (17) O10—C15—C16—O9 −35.3 (3)
C2—C1—C10—C19 −62.7 (2) C14—C15—C16—O9 −162.7 (2)
C2—C1—C10—C5 56.3 (2) O10—C15—C16—O8 149.45 (18)
C2—C1—C10—C9 170.74 (19) C14—C15—C16—O8 22.0 (3)
C4—C5—C10—C1 −49.7 (2) C13—O7—C20—C8 −6.9 (2)
C6—C5—C10—C1 179.60 (17) C7—C8—C20—O7 148.59 (17)
C4—C5—C10—C19 67.7 (2) C14—C8—C20—O7 35.0 (2)
C6—C5—C10—C19 −63.0 (2) C9—C8—C20—O7 −81.7 (2)
C4—C5—C10—C9 −165.37 (18) C22—O6—C21—O5 0.9 (4)
C6—C5—C10—C9 64.0 (2) C22—O6—C21—C13 −175.2 (2)
C11—C9—C10—C1 57.6 (2) O7—C13—C21—O5 −61.0 (3)
C8—C9—C10—C1 −170.06 (18) C14—C13—C21—O5 −173.3 (2)
C11—C9—C10—C19 −64.1 (3) C12—C13—C21—O5 54.7 (3)
C8—C9—C10—C19 68.3 (2) O7—C13—C21—O6 115.2 (2)
C11—C9—C10—C5 172.60 (18) C14—C13—C21—O6 2.8 (3)
C8—C9—C10—C5 −55.0 (2) C12—C13—C21—O6 −129.1 (2)
C8—C9—C11—O3 −84.4 (2) C15—O10—C1'—O11 −1.1 (3)
C10—C9—C11—O3 48.7 (2) C15—O10—C1'—C2' 177.03 (19)
C8—C9—C11—C12 40.2 (2) O11—C1'—C2'—C3' −169.2 (3)
C10—C9—C11—C12 173.40 (18) O10—C1'—C2'—C3' 12.7 (4)
O3—C11—C12—O4 −153.84 (17) C1'—C2'—C3'—C4' 2.3 (5)
C9—C11—C12—O4 81.7 (2) C1'—C2'—C3'—C5' −179.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1 0.82 2.17 2.629 (3) 116
O3—H3A···O11i 0.82 2.09 2.911 (2) 173
O4—H4A···O9ii 0.82 2.41 3.180 (2) 157
O4—H4A···O8ii 0.82 2.33 3.066 (2) 149
C11—H11A···O9ii 0.98 2.54 3.368 (4) 142
C5′—H5′B···O1iii 0.96 2.76 3.650 (3) 155

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2168).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies Ltd., Yarnton, England.
  2. Feng, X.-H., Zhang, Y.-N., He, W.-Z., Zhang, L. & Jiang, H.-Y. (2010). Acta Cryst. E66, o854–o855. [DOI] [PMC free article] [PubMed]
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Kim, I.-H., Takashima, S., Hitotsuyanagi, Y., Hasuda, T. & Takeya, K. (2004). J. Nat. Prod. 67, 863–868. [DOI] [PubMed]
  5. Moher, E. D., Collins, J. L. & Grieco, P. A. (1992). J. Am. Chem. Soc. 114, 2764–2765.
  6. Ren, D.-M., Villeneuve, N. F., Jiang, T., Wu, T.-D., Lau, A., Toppin, H. A. & Zhang, D.-D. (2011). Proc. Natl Acad. Sci. USA, 108, 1433–1438. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sim, K. Y., Sims, J. J. & Geissman, T. A. (1968). J. Org. Chem. 33, 429–431.
  9. Yan, X.-H., Chen, J., Di, Y.-T., Fang, X., Dong, J.-H., Sang, P., Wang, Y.-H., He, H.-P., Zhang, Z.-K. & Hao, X.-J. (2010). J. Agric. Food Chem. 58, 1572–1577. [DOI] [PubMed]
  10. Zhao, M., Lau, S.-T., Leung, P.-S., Che, C.-T. & Lin, Z.-X. (2011). Phytother. Res. 25, 1796–1800. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018582/vm2168sup1.cif

e-68-o1592-sup1.cif (28.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018582/vm2168Isup2.hkl

e-68-o1592-Isup2.hkl (165.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES