Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 2;68(Pt 6):o1598. doi: 10.1107/S160053681201865X

2-Chloro-4-(3,3-dichloro­all­yloxy)-1-nitro­benzene

Xiao-feng Yu a,*, Zheng-jun Xia b, Chun-ya Li b
PMCID: PMC3379208  PMID: 22719406

Abstract

In the crystal structure of the title compound, C9H6Cl3NO3, mol­ecules are connected by C—H⋯O hydrogen bonds, forming chains along the b axis. The dihedral angle between the benzene ring and the plane of the nitro group is 16.2 (1)° and that between the benzene ring and the plane of the dichloro­allyl group is 10.2 (1)°.

Related literature  

For background to the applications of the title compound, see: Kolosov et al. (2002). For the synthesis, see: Walker et al. (2005).graphic file with name e-68-o1598-scheme1.jpg

Experimental  

Crystal data  

  • C9H6Cl3NO3

  • M r = 282.50

  • Monoclinic, Inline graphic

  • a = 12.476 (3) Å

  • b = 12.775 (3) Å

  • c = 7.2230 (14) Å

  • β = 92.32 (3)°

  • V = 1150.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.799, T max = 0.926

  • 2300 measured reflections

  • 2118 independent reflections

  • 1414 reflections with I > 2σ(I)

  • R int = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.183

  • S = 1.00

  • 2118 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201865X/vm2169sup1.cif

e-68-o1598-sup1.cif (14.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201865X/vm2169Isup2.hkl

e-68-o1598-Isup2.hkl (104.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201865X/vm2169Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.93 2.54 3.449 (7) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

The title compound is an important intermediate in the synthesis of phenanthrenes, which can be utilized to synthesize organic semiconductors and conjugated polymers (Walker et al., 2005). These materials are of wide current interest for applications in electronic and optoelectronic devices including light-emitting diodes (Kolosov et al., 2002). We report here the crystal structure of the title compound, (I), which is of interest to us in this field.

The molecular structure of (I) is shown in Fig. 1. There is an intermolecular contact C—H···O in the title compound, forming molecular chains along the b axis direction (Table 1, Fig. 2). These molecular chains are linked by weak π—π interactions (Cg1···Cg1i distance = 3.724 (3) Å, Cg1 is the centroid of ring C1-C6, symmetry code: (i) x, 5/2 - y, -1/2 + z) to give a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure.

The dihedral angles between the planes A (atoms C1—C6), B (atoms N/O2/O3), C (atoms C7/C8/H8A/C9/Cl2/Cl3) are: A/B = 16.2 (1)°, A/C = 10.2 (1)°.

Experimental

The title compound, (I) was prepared by a method reported in literature (Walker et al., 2005). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I) viewed along the a axis (C-H···O hydrogen bonds are shown as broken lines).

Crystal data

C9H6Cl3NO3 F(000) = 568
Mr = 282.50 Dx = 1.631 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 12.476 (3) Å θ = 10–13°
b = 12.775 (3) Å µ = 0.79 mm1
c = 7.2230 (14) Å T = 293 K
β = 92.32 (3)° Block, colourless
V = 1150.3 (4) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1414 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
Graphite monochromator θmax = 25.4°, θmin = 1.6°
ω/2θ scans h = −15→15
Absorption correction: ψ scan (North et al., 1968) k = −15→0
Tmin = 0.799, Tmax = 0.926 l = 0→8
2300 measured reflections 3 standard reflections every 200 reflections
2118 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.7P] where P = (Fo2 + 2Fc2)/3
2118 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.0625 (4) 1.3968 (3) 0.1971 (7) 0.0603 (12)
Cl1 0.31002 (11) 1.42882 (9) 0.1250 (2) 0.0643 (4)
C1 0.2996 (4) 1.2216 (4) 0.1245 (7) 0.0468 (11)
H1A 0.3724 1.2256 0.1021 0.056*
O1 0.3184 (3) 1.0417 (2) 0.1211 (5) 0.0560 (9)
Cl2 0.45065 (11) 0.67097 (10) 0.1106 (2) 0.0685 (5)
C2 0.2415 (4) 1.3117 (3) 0.1436 (7) 0.0452 (11)
O2 0.1009 (4) 1.4802 (3) 0.2323 (8) 0.1053 (18)
Cl3 0.22239 (11) 0.70364 (10) 0.1046 (2) 0.0679 (5)
C3 0.1325 (3) 1.3051 (3) 0.1756 (7) 0.0441 (11)
O3 −0.0309 (3) 1.3841 (4) 0.1923 (12) 0.157 (3)
C4 0.0837 (4) 1.2084 (4) 0.1880 (7) 0.0505 (12)
H4A 0.0105 1.2044 0.2073 0.061*
C5 0.1433 (4) 1.1170 (4) 0.1718 (7) 0.0496 (12)
H5A 0.1106 1.0520 0.1837 0.060*
C6 0.2501 (4) 1.1231 (3) 0.1384 (6) 0.0432 (11)
C7 0.2718 (4) 0.9380 (3) 0.1296 (8) 0.0585 (14)
H7A 0.2213 0.9272 0.0256 0.070*
H7B 0.2340 0.9297 0.2434 0.070*
C8 0.3611 (4) 0.8612 (4) 0.1230 (7) 0.0542 (13)
H8A 0.4310 0.8865 0.1258 0.065*
C9 0.3467 (4) 0.7601 (4) 0.1137 (7) 0.0493 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.055 (3) 0.040 (2) 0.087 (3) 0.0090 (19) 0.005 (2) −0.007 (2)
Cl1 0.0614 (8) 0.0331 (6) 0.0991 (11) −0.0085 (5) 0.0112 (7) −0.0018 (6)
C1 0.042 (2) 0.037 (2) 0.062 (3) 0.0005 (19) 0.013 (2) 0.005 (2)
O1 0.0505 (18) 0.0324 (16) 0.086 (2) −0.0030 (14) 0.0182 (17) 0.0000 (17)
Cl2 0.0583 (8) 0.0419 (7) 0.1055 (12) 0.0096 (6) 0.0065 (7) −0.0031 (7)
C2 0.052 (3) 0.026 (2) 0.058 (3) −0.0048 (19) 0.005 (2) −0.001 (2)
O2 0.081 (3) 0.042 (2) 0.194 (6) 0.011 (2) 0.022 (3) −0.013 (3)
Cl3 0.0563 (8) 0.0419 (7) 0.1063 (12) −0.0047 (6) 0.0121 (7) −0.0094 (7)
C3 0.044 (2) 0.031 (2) 0.058 (3) 0.0050 (19) 0.002 (2) 0.000 (2)
O3 0.037 (2) 0.069 (3) 0.366 (10) 0.009 (2) 0.019 (4) −0.050 (5)
C4 0.041 (2) 0.046 (3) 0.065 (3) −0.004 (2) 0.010 (2) −0.001 (2)
C5 0.054 (3) 0.030 (2) 0.066 (3) −0.005 (2) 0.011 (2) 0.003 (2)
C6 0.051 (3) 0.029 (2) 0.050 (3) 0.0001 (19) 0.010 (2) 0.001 (2)
C7 0.048 (3) 0.032 (2) 0.096 (4) −0.006 (2) 0.010 (3) −0.002 (3)
C8 0.052 (3) 0.037 (3) 0.074 (3) −0.005 (2) 0.006 (2) −0.002 (2)
C9 0.052 (3) 0.037 (3) 0.059 (3) 0.004 (2) 0.008 (2) 0.006 (2)

Geometric parameters (Å, º)

N—O3 1.176 (6) Cl3—C9 1.709 (5)
N—O2 1.192 (6) C3—C4 1.382 (6)
N—C3 1.472 (6) C4—C5 1.392 (6)
Cl1—C2 1.731 (4) C4—H4A 0.9300
C1—C2 1.370 (6) C5—C6 1.367 (6)
C1—C6 1.406 (6) C5—H5A 0.9300
C1—H1A 0.9300 C7—C8 1.487 (6)
O1—C6 1.353 (5) C7—H7A 0.9700
O1—C7 1.449 (5) C7—H7B 0.9700
Cl2—C9 1.727 (5) C8—C9 1.304 (7)
C2—C3 1.392 (6) C8—H8A 0.9300
O3—N—O2 121.2 (5) C6—C5—H5A 120.2
O3—N—C3 118.6 (4) C4—C5—H5A 120.2
O2—N—C3 119.9 (4) O1—C6—C5 126.4 (4)
C2—C1—C6 120.6 (4) O1—C6—C1 113.6 (4)
C2—C1—H1A 119.7 C5—C6—C1 119.9 (4)
C6—C1—H1A 119.7 O1—C7—C8 107.5 (4)
C6—O1—C7 116.4 (4) O1—C7—H7A 110.2
C1—C2—C3 119.4 (4) C8—C7—H7A 110.2
C1—C2—Cl1 117.0 (4) O1—C7—H7B 110.2
C3—C2—Cl1 123.6 (3) C8—C7—H7B 110.2
C4—C3—C2 120.1 (4) H7A—C7—H7B 108.5
C4—C3—N 116.1 (4) C9—C8—C7 123.6 (5)
C2—C3—N 123.9 (4) C9—C8—H8A 118.2
C3—C4—C5 120.4 (4) C7—C8—H8A 118.2
C3—C4—H4A 119.8 C8—C9—Cl3 122.9 (4)
C5—C4—H4A 119.8 C8—C9—Cl2 123.4 (4)
C6—C5—C4 119.7 (4) Cl3—C9—Cl2 113.7 (3)
C6—C1—C2—C3 −0.5 (7) C3—C4—C5—C6 −1.8 (7)
C6—C1—C2—Cl1 179.8 (4) C7—O1—C6—C5 3.3 (7)
C1—C2—C3—C4 0.0 (7) C7—O1—C6—C1 −178.5 (4)
Cl1—C2—C3—C4 179.8 (4) C4—C5—C6—O1 179.4 (5)
C1—C2—C3—N −179.6 (5) C4—C5—C6—C1 1.3 (7)
Cl1—C2—C3—N 0.1 (7) C2—C1—C6—O1 −178.4 (4)
O3—N—C3—C4 −12.3 (8) C2—C1—C6—C5 −0.2 (7)
O2—N—C3—C4 162.1 (5) C6—O1—C7—C8 −175.5 (4)
O3—N—C3—C2 167.3 (6) O1—C7—C8—C9 −174.5 (5)
O2—N—C3—C2 −18.2 (8) C7—C8—C9—Cl3 0.9 (8)
C2—C3—C4—C5 1.1 (7) C7—C8—C9—Cl2 −178.7 (4)
N—C3—C4—C5 −179.2 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5A···O3i 0.93 2.54 3.449 (7) 165

Symmetry code: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2169).

References

  1. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945–9954. [DOI] [PubMed]
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Walker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537–6540.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201865X/vm2169sup1.cif

e-68-o1598-sup1.cif (14.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201865X/vm2169Isup2.hkl

e-68-o1598-Isup2.hkl (104.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201865X/vm2169Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES