Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 2;68(Pt 6):o1599. doi: 10.1107/S1600536812018818

4-[(4-Meth­oxy­benzyl­idene)amino]­benzene­sulfonamide

Omoruyi G Idemudia a,*, Alexander P Sadimenko a, Anthony J Afolayan a, Eric C Hosten b
PMCID: PMC3379209  PMID: 22719407

Abstract

The title Schiff base compound, C14H14N2O3S, is non-planar, with a dihedral angle of 24.16 (7)° between the benzene rings. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules into a layer parallel to (011). Intra- and inter­layer C—H⋯O inter­actions and π–π inter­actions [centroid–centroid distances = 3.8900 (9) and 3.9355 (8) Å] are also present.

Related literature  

For general background to the applications of sulfanilamide Schiff bases, see: Gupta et al. (2003); Khalil et al. (2009); Nagpal & Singh (2004); Sharaby (2007); Wu et al. (2004).graphic file with name e-68-o1599-scheme1.jpg

Experimental  

Crystal data  

  • C14H14N2O3S

  • M r = 290.33

  • Monoclinic, Inline graphic

  • a = 16.3315 (5) Å

  • b = 11.1597 (3) Å

  • c = 7.6876 (3) Å

  • β = 100.661 (1)°

  • V = 1376.92 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 200 K

  • 0.60 × 0.33 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.90, T max = 0.97

  • 10501 measured reflections

  • 3383 independent reflections

  • 2821 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.095

  • S = 1.08

  • 3383 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018818/hy2541sup1.cif

e-68-o1599-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018818/hy2541Isup2.hkl

e-68-o1599-Isup2.hkl (165.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018818/hy2541Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812018818/hy2541Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Department of Chemistry and Govan Mbeki Research and Development Centre (GMRDC), University of Fort Hare, for their support.

supplementary crystallographic information

Comment

Biological applications of sulfa compounds either alone or as metal complexes are well known (Gupta et al., 2003; Nagpal & Singh, 2004). Their chelating powers towards metal ions tend to increase on forming a Schiff base by way of reaction with a carbonyl (Khalil et al., 2009; Sharaby, 2007; Wu et al., 2004). Herein, we report a new sulfanilamide Schiff base (Fig. 1), as part of our look at developing better chelating ligands from biologically active amine compounds.

The least-squares planes through the phenyl rings of the benzenesulfonamide and methoxybenzaldehyde groups have a dihedral angle of 24.16 (7)°. In the crystal, the molecules are stacked along the c axis and linked by N—H···O and N—H···N hydrogen bonds (Table 1 and Fig. 2) into a layer parallel to (0 1 1) (Fig. 3). The least-squares planes through adjacent two methoxybenzaldehyde phenyl rings (C11–C16) are almost parallel with a dihedral angle of 3.97° and a centroid-to-centroid distance of 3.8900 (9) Å. The centroid-to-centroid distance between adjacent two benzenesulfonamide phenyl rings (C21–C26) is 3.9355 (8) Å. C22—H22···π interaction occurs with the adjacent C21–C26 ring (H···Cg distance = 2.81 Å). Intra- and interlayer C—H···O interactions are also observed.

Experimental

A mixture of (4-aminobenzenesulfonamide)sulfadiazine and 4-methoxybenzaldehyde (anisaldehyde) (molar ratio 1:1) in methanol was refluxed for 15 h. The resultant pale yellow precipitate was isolated by filtration and recrystalized from methanol. Yield 68% and melting point 199–201°C. Single crystals suitable for X-ray analysis were obtained from methanol by slow evaporation at room temperature.

Refinement

C-bound H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 (CH), 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). N-bound H atoms were located on a difference Fourier map and refined as riding with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Hydrogen bonds in the title compound. [Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, -y+2, -z+1; (iii) -x+1, y-1/2, -z+3/2; (iv) x-1, y, z-1.]

Fig. 3.

Fig. 3.

Crystal packing of the title compound viewed along [0 1 0].

Crystal data

C14H14N2O3S F(000) = 608
Mr = 290.33 Dx = 1.401 Mg m3
Monoclinic, P21/c Melting point: 473.15 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 16.3315 (5) Å Cell parameters from 118 reflections
b = 11.1597 (3) Å θ = 3.1–29.3°
c = 7.6876 (3) Å µ = 0.24 mm1
β = 100.661 (1)° T = 200 K
V = 1376.92 (8) Å3 Platelet, yellow
Z = 4 0.60 × 0.33 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 3383 independent reflections
Radiation source: sealed tube 2821 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
Detector resolution: 8.3333 pixels mm-1 θmax = 28.3°, θmin = 2.2°
φ and ω scans h = −21→21
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −14→14
Tmin = 0.90, Tmax = 0.97 l = −10→8
10501 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.7392P] where P = (Fo2 + 2Fc2)/3
3383 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.663198 (19) 0.87003 (3) 0.83688 (5) 0.02211 (10)
O1 −0.04751 (7) 0.67929 (13) 0.0325 (2) 0.0479 (4)
O2 0.68589 (6) 0.74895 (9) 0.88958 (16) 0.0306 (3)
O3 0.66935 (7) 0.96150 (10) 0.96956 (16) 0.0333 (3)
N1 0.31032 (7) 0.85378 (10) 0.45630 (17) 0.0231 (2)
N2 0.72148 (7) 0.90797 (11) 0.69963 (17) 0.0248 (3)
H2A 0.719 0.8559 0.6172 0.03*
H2B 0.7141 0.9792 0.6628 0.03*
C1 0.27140 (8) 0.75396 (13) 0.4333 (2) 0.0250 (3)
H1 0.2986 0.6843 0.4867 0.03*
C2 −0.10221 (11) 0.7766 (2) −0.0293 (3) 0.0553 (6)
H2C −0.0756 0.8292 −0.1044 0.083*
H2D −0.1142 0.8221 0.0721 0.083*
H2E −0.1543 0.7451 −0.0979 0.083*
C11 0.18743 (8) 0.74102 (13) 0.3295 (2) 0.0257 (3)
C12 0.15750 (9) 0.62521 (14) 0.2867 (2) 0.0319 (3)
H12 0.1914 0.558 0.3275 0.038*
C13 0.07929 (10) 0.60763 (15) 0.1859 (2) 0.0365 (4)
H13 0.0598 0.5287 0.1558 0.044*
C14 0.02902 (9) 0.70602 (16) 0.1285 (2) 0.0335 (4)
C15 0.05726 (9) 0.82138 (15) 0.1709 (2) 0.0344 (4)
H15 0.0228 0.8884 0.1321 0.041*
C16 0.13644 (9) 0.83808 (14) 0.2707 (2) 0.0310 (3)
H16 0.1561 0.9171 0.2993 0.037*
C21 0.39382 (8) 0.85383 (12) 0.55004 (19) 0.0206 (3)
C22 0.44881 (8) 0.75989 (12) 0.5357 (2) 0.0225 (3)
H22 0.43 0.6923 0.4643 0.027*
C23 0.53057 (8) 0.76496 (12) 0.6253 (2) 0.0223 (3)
H23 0.5675 0.7002 0.6176 0.027*
C24 0.55836 (8) 0.86504 (11) 0.72618 (19) 0.0199 (3)
C25 0.50485 (9) 0.96019 (12) 0.7391 (2) 0.0244 (3)
H25 0.5244 1.0287 0.8077 0.029*
C26 0.42248 (8) 0.95441 (12) 0.6508 (2) 0.0246 (3)
H26 0.3857 1.0192 0.6592 0.03*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01897 (16) 0.02111 (17) 0.02420 (19) −0.00156 (11) −0.00138 (12) 0.00123 (13)
O1 0.0217 (5) 0.0634 (9) 0.0533 (9) −0.0056 (5) −0.0072 (5) −0.0087 (7)
O2 0.0250 (5) 0.0263 (5) 0.0377 (7) 0.0009 (4) −0.0015 (4) 0.0113 (5)
O3 0.0301 (5) 0.0363 (6) 0.0304 (6) −0.0027 (4) −0.0023 (4) −0.0097 (5)
N1 0.0194 (5) 0.0234 (6) 0.0252 (6) 0.0002 (4) 0.0007 (4) 0.0015 (5)
N2 0.0224 (5) 0.0197 (5) 0.0314 (7) −0.0027 (4) 0.0029 (5) 0.0025 (5)
C1 0.0216 (6) 0.0235 (6) 0.0284 (8) −0.0005 (5) 0.0010 (5) 0.0029 (5)
C2 0.0239 (8) 0.0838 (16) 0.0532 (13) 0.0076 (9) −0.0063 (8) −0.0003 (12)
C11 0.0198 (6) 0.0279 (7) 0.0282 (8) −0.0023 (5) 0.0013 (5) 0.0010 (6)
C12 0.0263 (7) 0.0282 (7) 0.0391 (9) −0.0030 (6) 0.0005 (6) 0.0016 (7)
C13 0.0282 (7) 0.0346 (8) 0.0440 (10) −0.0092 (6) −0.0002 (7) −0.0053 (7)
C14 0.0188 (6) 0.0477 (9) 0.0323 (9) −0.0032 (6) 0.0005 (6) −0.0036 (7)
C15 0.0226 (7) 0.0388 (9) 0.0398 (10) 0.0041 (6) 0.0008 (6) 0.0013 (7)
C16 0.0234 (7) 0.0292 (7) 0.0388 (9) −0.0004 (6) 0.0014 (6) 0.0009 (7)
C21 0.0191 (6) 0.0199 (6) 0.0217 (7) −0.0003 (5) 0.0013 (5) 0.0036 (5)
C22 0.0218 (6) 0.0191 (6) 0.0259 (7) −0.0024 (5) 0.0026 (5) −0.0029 (5)
C23 0.0202 (6) 0.0193 (6) 0.0274 (7) 0.0002 (5) 0.0045 (5) −0.0008 (5)
C24 0.0183 (5) 0.0192 (6) 0.0213 (7) −0.0016 (4) 0.0014 (5) 0.0022 (5)
C25 0.0254 (6) 0.0176 (6) 0.0281 (7) −0.0009 (5) 0.0000 (5) −0.0023 (5)
C26 0.0238 (6) 0.0190 (6) 0.0297 (8) 0.0026 (5) 0.0015 (5) −0.0011 (5)

Geometric parameters (Å, º)

S1—O3 1.4333 (11) C12—H12 0.95
S1—O2 1.4393 (10) C13—C14 1.393 (2)
S1—N2 1.6032 (13) C13—H13 0.95
S1—C24 1.7663 (13) C14—C15 1.386 (2)
O1—C14 1.3617 (17) C15—C16 1.389 (2)
O1—C2 1.430 (2) C15—H15 0.95
N1—C1 1.2786 (18) C16—H16 0.95
N1—C21 1.4196 (16) C21—C26 1.3945 (19)
N2—H2A 0.8551 C21—C22 1.3978 (18)
N2—H2B 0.8452 C22—C23 1.3856 (18)
C1—C11 1.4607 (18) C22—H22 0.95
C1—H1 0.95 C23—C24 1.3875 (19)
C2—H2C 0.98 C23—H23 0.95
C2—H2D 0.98 C24—C25 1.3904 (18)
C2—H2E 0.98 C25—C26 1.3916 (19)
C11—C16 1.390 (2) C25—H25 0.95
C11—C12 1.399 (2) C26—H26 0.95
C12—C13 1.380 (2)
O3—S1—O2 119.20 (7) C14—C13—H13 120.1
O3—S1—N2 107.96 (7) O1—C14—C15 124.27 (15)
O2—S1—N2 106.25 (7) O1—C14—C13 115.28 (15)
O3—S1—C24 107.42 (6) C15—C14—C13 120.44 (14)
O2—S1—C24 106.39 (6) C14—C15—C16 119.35 (15)
N2—S1—C24 109.38 (6) C14—C15—H15 120.3
C14—O1—C2 117.90 (15) C16—C15—H15 120.3
C1—N1—C21 118.48 (12) C15—C16—C11 121.04 (15)
S1—N2—H2A 110.9 C15—C16—H16 119.5
S1—N2—H2B 113.8 C11—C16—H16 119.5
H2A—N2—H2B 114.0 C26—C21—C22 119.53 (12)
N1—C1—C11 123.66 (13) C26—C21—N1 118.32 (12)
N1—C1—H1 118.2 C22—C21—N1 122.04 (12)
C11—C1—H1 118.2 C23—C22—C21 120.29 (12)
O1—C2—H2C 109.5 C23—C22—H22 119.9
O1—C2—H2D 109.5 C21—C22—H22 119.9
H2C—C2—H2D 109.5 C22—C23—C24 119.74 (12)
O1—C2—H2E 109.5 C22—C23—H23 120.1
H2C—C2—H2E 109.5 C24—C23—H23 120.1
H2D—C2—H2E 109.5 C23—C24—C25 120.64 (12)
C16—C11—C12 118.77 (13) C23—C24—S1 118.85 (10)
C16—C11—C1 123.09 (13) C25—C24—S1 120.51 (10)
C12—C11—C1 118.13 (13) C24—C25—C26 119.57 (13)
C13—C12—C11 120.67 (14) C24—C25—H25 120.2
C13—C12—H12 119.7 C26—C25—H25 120.2
C11—C12—H12 119.7 C25—C26—C21 120.19 (12)
C12—C13—C14 119.73 (15) C25—C26—H26 119.9
C12—C13—H13 120.1 C21—C26—H26 119.9
C21—N1—C1—C11 −175.87 (13) C26—C21—C22—C23 1.9 (2)
N1—C1—C11—C16 −11.2 (2) N1—C21—C22—C23 178.05 (13)
N1—C1—C11—C12 168.42 (16) C21—C22—C23—C24 −1.5 (2)
C16—C11—C12—C13 0.9 (3) C22—C23—C24—C25 0.3 (2)
C1—C11—C12—C13 −178.67 (16) C22—C23—C24—S1 −179.27 (11)
C11—C12—C13—C14 −1.1 (3) O3—S1—C24—C23 −163.03 (12)
C2—O1—C14—C15 0.3 (3) O2—S1—C24—C23 −34.34 (13)
C2—O1—C14—C13 179.64 (17) N2—S1—C24—C23 80.04 (12)
C12—C13—C14—O1 −178.90 (16) O3—S1—C24—C25 17.41 (14)
C12—C13—C14—C15 0.4 (3) O2—S1—C24—C25 146.11 (12)
O1—C14—C15—C16 179.57 (16) N2—S1—C24—C25 −99.52 (13)
C13—C14—C15—C16 0.3 (3) C23—C24—C25—C26 0.5 (2)
C14—C15—C16—C11 −0.4 (3) S1—C24—C25—C26 180.00 (11)
C12—C11—C16—C15 −0.2 (2) C24—C25—C26—C21 0.0 (2)
C1—C11—C16—C15 179.39 (15) C22—C21—C26—C25 −1.2 (2)
C1—N1—C21—C26 −148.41 (14) N1—C21—C26—C25 −177.44 (13)
C1—N1—C21—C22 35.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O2i 0.86 2.09 2.9280 (17) 166
N2—H2B···N1ii 0.85 2.08 2.9233 (17) 173
C1—H1···O3iii 0.95 2.55 3.4466 (18) 157
C2—H2E···O2iv 0.98 2.59 3.415 (2) 141

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2541).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Gupta, M. K., Singh, H. L., Varshney, S. & Varshney, A. K. (2003). Bioinorg. Chem. Appl. 1, 309–320. [DOI] [PMC free article] [PubMed]
  5. Khalil, R. A., Jalil, A. H. & Abd-Alrazzak, A. Y. (2009). Iran. Chem. Soc. 6, 345–352.
  6. Nagpal, P. & Singh, R. V. (2004). Appl. Organomet. Chem. 18, 221–226.
  7. Sharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271–1278. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Wu, C. Y., Chen, L. H., Hwang, W. S., Chen, H. S., Chen, H. S. & Hung, C. H. (2004). J. Organomet. Chem. 689, 2192–2200.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018818/hy2541sup1.cif

e-68-o1599-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018818/hy2541Isup2.hkl

e-68-o1599-Isup2.hkl (165.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018818/hy2541Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812018818/hy2541Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES