Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 2;68(Pt 6):o1600. doi: 10.1107/S1600536812019010

N,N,N′,N′-Tetra­kis(pyridin-4-yl)methane­diamine monohydrate

Jong Won Shin a, Kil Sik Min b,*
PMCID: PMC3379210  PMID: 22719408

Abstract

In the title compound, C21H18N6·H2O, two 4,4′-dipyridyl­amine groups are linked by a methyl­ene C atom, which sits on a twofold axis. The lattice water mol­ecule is located slightly off a twofold axis, and is therefore disordered over two positions. In the crystal, the organic mol­ecules and the water mol­ecule are linked by O—H⋯N hydrogen bonds. The organic mol­ecules exhibit extensive offset face-to-face π–π inter­actions to symmetry equivalents [centroid–centroid distances = 3.725 (3) and 4.059 (3) Å].

Related literature  

For metal-organic frameworks including 4,4′-dipyridyl­amine, see: Braverman & LaDuca (2007); Shyu et al. (2009). For the catalysis of multidimensional metal-organic frameworks, see: Welbes & Borovik (2005). For self-assembled metal-organic networks and their luminescent properties, see: Shin et al. (2012); Zeng et al. (2010).graphic file with name e-68-o1600-scheme1.jpg

Experimental  

Crystal data  

  • C21H18N6·H2O

  • M r = 372.42

  • Monoclinic, Inline graphic

  • a = 13.9048 (11) Å

  • b = 13.7637 (11) Å

  • c = 10.0569 (8) Å

  • β = 109.142 (2)°

  • V = 1818.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.34 × 0.26 × 0.25 mm

Data collection  

  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.973, T max = 0.978

  • 6540 measured reflections

  • 2241 independent reflections

  • 1313 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.163

  • S = 1.09

  • 2241 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019010/pk2409sup1.cif

e-68-o1600-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019010/pk2409Isup2.hkl

e-68-o1600-Isup2.hkl (108KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019010/pk2409Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N2i 1.02 1.88 2.869 (2) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0003672). The authors acknowledge the Korea Basic Science Institute for the X-ray data collection.

supplementary crystallographic information

Comment

Polypyridyl ligands have attracted considerable attention in materials science because they can be used for the construction of multidimensional metal-organic frameworks. These have potential applications in catalysis and as luminescent materials (Shin et al., 2012; Welbes & Borovik, 2005; Zeng et al., 2010). For example, as a building block, bis(4-pyridyl)amine (bpa) has been extensively used for self-assembly of multidimensional coordination polymers, because the ligand has significant functionalities, e.g. hydrogen bonding capability (Braverman & LaDuca, 2007; Shyu, et al., 2009). Thus, we have made a new ligand, N,N,N',N'-tetra-4-pyridyl-methylenediamine (TPMD), which can be used as a building unit for self-assembly of potential luminescent materials and catalysts. Here, we report the synthesis and crystal structure of N,N,N',N'-tetra-4-pyridyl-methylenediamine monohydrate.

The title compound in its crystalline state is centrosymmetric (Fig. 1). The dihedral angle between neighboring pyridyl rings is 63.74 (7)°, and the angle of N1—C11—N1(-x, y, 1.5 - z) is 114.5 (2)°. The water molecule appears to be slightly off a 2-fold axis, and was refined using a disordered model, which gave a lower R value and a flatter difference map compared to a non-disordered model. The crystal packing is stabilized by strong intermolecular O—H···N hydrogen bonds (Table 1) that connect pairs of organic molecules by water molecules into chains along the (101) direction (Fig. 2). The crystal is also stabilized by intermolecular offset face-to-face π-π interactions [centroid-centroid distances = 3.725 (3) Å (-x + 1/2, -y + 1/2, 2 - z) and 4.059 (3) Å (-x + 1/2, -y + 1/2, 1 - z)] (Fig. 3).

Experimental

The title compound was prepared as follows. NaH (0.561 g, 0.0234 mol) was added carefully to a DMF solution (50 ml) of 4,4'-dipyridylamine (2.00 g, 0.0117 mol) and stirred for 2 days at room temperature. To the mixture was added dropwise dichloromethane (20 ml) and the mixture solution was again stirred for 2 days, which resulted in a dark red solution. Then the mixture was quenched with H2O (50 ml), and the organic layer was extracted with CHCl3 (3 times, 100 ml). The extract was washed with NaCl solution to purify and then dried with Na2SO4. After removing the organic solvent, a pale yellow oil was obtained, from which colorless crystals formed in 1 day. The crystals were filtered and washed with n-hexane and acetonitrile. Yield: 0.86 g (42%). Anal. Calcd. for C21H20N6O: C, 67.73; H, 5.41; N, 22.57. Found: C, 67.63; H, 5.23; N, 22.51. 1H NMR (400 MHz, DMSO-d6, 300 K): δ = 8.35 (dd, J = 1.52, 1.52 Hz, 8 H), 6.91 (dd, J = 1.56, 1.60 Hz, 8 H), 5.95 (s, 2H). GC—MS: m/z = 354.1 (M+). IR (KBr, cm-1): 3425, 3050, 3024, 1601, 1581, 1497, 1207, 1068, 850, 602.

Refinement

The H atom of O1 was located in a difference Fourier map and refined isotropically. The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) Å and 0.99 (open chain H atoms) Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C atoms.

Figures

Fig. 1.

Fig. 1.

An ellipsoid plot (40% probability) of the title compound. The unlabelled half of the molecule is related by a crystallographic 2-fold axis. The water molecule is disordered about a 2-fold axis (for clarity, only one component is shown).

Fig. 2.

Fig. 2.

A view of the title compound showing a one-dimensional chain formed by O—H···N hydrogen bonding interactions. The chain extends along the (101) direction.

Fig. 3.

Fig. 3.

A view of the title compound showing offset face-to-face π-π interactions.

Crystal data

C21H18N6·H2O F(000) = 784
Mr = 372.42 Dx = 1.360 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2155 reflections
a = 13.9048 (11) Å θ = 2.7–28.2°
b = 13.7637 (11) Å µ = 0.09 mm1
c = 10.0569 (8) Å T = 200 K
β = 109.142 (2)° Block, colorless
V = 1818.3 (3) Å3 0.34 × 0.26 × 0.25 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer 2241 independent reflections
Radiation source: fine-focus sealed tube 1313 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→18
Tmin = 0.973, Tmax = 0.978 k = −18→16
6540 measured reflections l = −13→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.1675P] where P = (Fo2 + 2Fc2)/3
2241 reflections (Δ/σ)max < 0.001
130 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.08225 (11) 0.18977 (10) 0.72834 (16) 0.0378 (4)
N2 0.32207 (12) 0.08225 (11) 1.07690 (17) 0.0456 (4)
N3 0.12205 (15) 0.19990 (14) 0.3297 (2) 0.0627 (6)
C1 0.24926 (14) 0.11276 (13) 0.8290 (2) 0.0415 (5)
H1 0.2569 0.1085 0.7387 0.050*
C2 0.32458 (14) 0.07990 (13) 0.9453 (2) 0.0455 (5)
H2 0.3836 0.0532 0.9315 0.055*
C3 0.23734 (15) 0.12101 (13) 1.0907 (2) 0.0444 (5)
H3 0.2327 0.1249 1.1827 0.053*
C4 0.15609 (14) 0.15572 (12) 0.9798 (2) 0.0388 (5)
H4 0.0977 0.1813 0.9966 0.047*
C5 0.16063 (13) 0.15281 (11) 0.84383 (19) 0.0356 (4)
C6 0.09476 (13) 0.19319 (12) 0.5933 (2) 0.0373 (4)
C7 0.09792 (15) 0.28090 (13) 0.5269 (2) 0.0461 (5)
H7 0.0918 0.3406 0.5708 0.055*
C8 0.11000 (16) 0.28004 (16) 0.3965 (2) 0.0569 (6)
H8 0.1097 0.3407 0.3512 0.068*
C9 0.11687 (16) 0.11622 (16) 0.3940 (2) 0.0555 (6)
H9 0.1238 0.0577 0.3480 0.067*
C10 0.10220 (14) 0.10896 (14) 0.5221 (2) 0.0452 (5)
H10 0.0972 0.0471 0.5613 0.054*
C11 0.0000 0.24732 (13) 0.7500 0.0355 (6)
H11A 0.0293 0.2898 0.8329 0.043* 0.50
H11B −0.0293 0.2898 0.6671 0.043* 0.50
O1 0.4878 (6) 0.01031 (13) 0.7761 (8) 0.0617 (12) 0.50
H1W 0.5532 −0.0300 0.8088 0.130 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0315 (8) 0.0354 (8) 0.0500 (9) 0.0046 (6) 0.0180 (7) 0.0039 (6)
N2 0.0331 (9) 0.0417 (9) 0.0577 (11) 0.0006 (7) 0.0089 (8) 0.0033 (7)
N3 0.0592 (13) 0.0774 (13) 0.0613 (12) 0.0230 (10) 0.0331 (10) 0.0175 (10)
C1 0.0353 (11) 0.0379 (10) 0.0547 (12) 0.0007 (8) 0.0193 (9) 0.0021 (8)
C2 0.0335 (11) 0.0403 (10) 0.0650 (14) 0.0014 (8) 0.0190 (9) −0.0005 (9)
C3 0.0454 (12) 0.0394 (10) 0.0498 (12) −0.0056 (9) 0.0175 (9) 0.0005 (8)
C4 0.0315 (10) 0.0314 (9) 0.0577 (12) −0.0013 (7) 0.0203 (9) 0.0024 (8)
C5 0.0319 (10) 0.0260 (8) 0.0497 (11) −0.0037 (7) 0.0146 (8) 0.0022 (7)
C6 0.0262 (9) 0.0382 (10) 0.0498 (11) 0.0035 (7) 0.0158 (8) 0.0066 (8)
C7 0.0407 (12) 0.0382 (10) 0.0663 (14) 0.0027 (8) 0.0270 (10) 0.0090 (9)
C8 0.0490 (14) 0.0604 (14) 0.0709 (15) 0.0124 (10) 0.0326 (11) 0.0269 (11)
C9 0.0514 (14) 0.0595 (13) 0.0595 (14) 0.0176 (10) 0.0235 (11) 0.0006 (10)
C10 0.0433 (12) 0.0387 (10) 0.0572 (12) 0.0078 (8) 0.0214 (10) 0.0033 (8)
C11 0.0285 (13) 0.0291 (12) 0.0509 (15) 0.000 0.0158 (11) 0.000
O1 0.052 (2) 0.0452 (13) 0.072 (2) 0.0162 (17) −0.0008 (17) −0.0107 (16)

Geometric parameters (Å, º)

N1—C5 1.402 (2) C4—H4 0.9500
N1—C6 1.425 (2) C6—C10 1.384 (3)
N1—C11 1.4649 (17) C6—C7 1.387 (2)
N2—C2 1.335 (2) C7—C8 1.376 (3)
N2—C3 1.341 (2) C7—H7 0.9500
N3—C8 1.330 (3) C8—H8 0.9500
N3—C9 1.335 (3) C9—C10 1.373 (3)
C1—C2 1.366 (3) C9—H9 0.9500
C1—C5 1.402 (2) C10—H10 0.9500
C1—H1 0.9500 C11—N1i 1.4649 (17)
C2—H2 0.9500 C11—H11A 0.9900
C3—C4 1.387 (3) C11—H11B 0.9900
C3—H3 0.9500 O1—O1ii 0.7127
C4—C5 1.390 (2) O1—H1W 1.0230
C5—N1—C6 119.78 (14) C10—C6—N1 121.22 (15)
C5—N1—C11 120.38 (13) C7—C6—N1 121.38 (16)
C6—N1—C11 117.96 (12) C8—C7—C6 118.99 (18)
C2—N2—C3 114.92 (16) C8—C7—H7 120.5
C8—N3—C9 115.77 (19) C6—C7—H7 120.5
C2—C1—C5 119.54 (18) N3—C8—C7 124.30 (18)
C2—C1—H1 120.2 N3—C8—H8 117.8
C5—C1—H1 120.2 C7—C8—H8 117.8
N2—C2—C1 125.35 (19) N3—C9—C10 124.49 (19)
N2—C2—H2 117.3 N3—C9—H9 117.8
C1—C2—H2 117.3 C10—C9—H9 117.8
N2—C3—C4 124.43 (18) C9—C10—C6 118.94 (17)
N2—C3—H3 117.8 C9—C10—H10 120.5
C4—C3—H3 117.8 C6—C10—H10 120.5
C3—C4—C5 119.59 (17) N1i—C11—N1 114.54 (16)
C3—C4—H4 120.2 N1i—C11—H11A 108.6
C5—C4—H4 120.2 N1—C11—H11A 108.6
C4—C5—C1 116.16 (16) N1i—C11—H11B 108.6
C4—C5—N1 122.06 (16) N1—C11—H11B 108.6
C1—C5—N1 121.76 (17) H11A—C11—H11B 107.6
C10—C6—C7 117.39 (18) O1ii—O1—H1W 69.5
C3—N2—C2—C1 −0.3 (3) C11—N1—C6—C10 −129.57 (17)
C5—C1—C2—N2 0.0 (3) C5—N1—C6—C7 −115.35 (19)
C2—N2—C3—C4 0.8 (3) C11—N1—C6—C7 49.1 (2)
N2—C3—C4—C5 −1.1 (3) C10—C6—C7—C8 −1.2 (3)
C3—C4—C5—C1 0.7 (2) N1—C6—C7—C8 −179.92 (17)
C3—C4—C5—N1 −177.87 (15) C9—N3—C8—C7 3.2 (3)
C2—C1—C5—C4 −0.2 (2) C6—C7—C8—N3 −2.1 (3)
C2—C1—C5—N1 178.37 (16) C8—N3—C9—C10 −1.2 (3)
C6—N1—C5—C4 174.20 (15) N3—C9—C10—C6 −1.8 (3)
C11—N1—C5—C4 10.1 (2) C7—C6—C10—C9 2.9 (3)
C6—N1—C5—C1 −4.3 (2) N1—C6—C10—C9 −178.31 (17)
C11—N1—C5—C1 −168.41 (15) C5—N1—C11—N1i −82.93 (13)
C5—N1—C6—C10 65.9 (2) C6—N1—C11—N1i 112.69 (14)

Symmetry codes: (i) −x, y, −z+3/2; (ii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1W···N2iii 1.02 1.88 2.869 (2) 161

Symmetry code: (iii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2409).

References

  1. Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2343–2351.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Shin, J. W., Cho, H. J. & Min, K. S. (2012). Inorg. Chem. Commun. 16, 12–16.
  6. Shyu, E., Supkowski, R. M. & LaDuca, R. L. (2009). Cryst. Growth Des. 9, 2481–2491.
  7. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  8. Welbes, L. L. & Borovik, A. S. (2005). Acc. Chem. Res. 38, 765–774. [DOI] [PubMed]
  9. Zeng, F., Ni, J., Wang, Q., Ding, Y., Ng, S. W., Zhu, W. & Xie, Y. (2010). Cryst. Growth Des. 10, 1611–1622.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019010/pk2409sup1.cif

e-68-o1600-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019010/pk2409Isup2.hkl

e-68-o1600-Isup2.hkl (108KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019010/pk2409Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES