Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 2;68(Pt 6):o1601–o1602. doi: 10.1107/S1600536812018922

2-Amino-3-carb­oxy­pyridinium perchlorate

Fadila Berrah a,*, Sofiane Bouacida b, Hayet Anana a, Thierry Roisnel c
PMCID: PMC3379211  PMID: 22719409

Abstract

The asymmetric unit includes two crystallographically independent equivalents of the title salt, C6H7N2O2 +·ClO4 . The cations and anions form separate layers alternating along the c axis, which are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds into a two-dimensional network parallel to (100). Further C—H⋯O contacts connect these layers, forming a three-dimensional network, in which R 4 4(20) rings and C 2 2(11) infinite chains can be identified.

Related literature  

For structural studies of hybrid compounds of 2-amino­nicotinic acid, see: Akriche & Rzaigui (2007); Berrah et al. (2011a ,b ). For related perchlorate compounds, see: Toumi Akriche et al. (2010); Bendjeddou et al. (2003). For hydrogen-bond motifs, see: Etter et al. (1990); Grell et al. (1999).graphic file with name e-68-o1601-scheme1.jpg

Experimental  

Crystal data  

  • C6H7N2O2 +·ClO4

  • M r = 238.59

  • Monoclinic, Inline graphic

  • a = 17.3573 (12) Å

  • b = 5.0800 (4) Å

  • c = 21.6293 (17) Å

  • β = 107.239 (2)°

  • V = 1821.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 150 K

  • 0.48 × 0.17 × 0.08 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.847, T max = 0.966

  • 13822 measured reflections

  • 4142 independent reflections

  • 3305 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.110

  • S = 1.11

  • 4142 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018922/ld2056sup1.cif

e-68-o1601-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018922/ld2056Isup2.hkl

e-68-o1601-Isup2.hkl (198.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018922/ld2056Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O21 0.82 1.99 2.810 (3) 173
O1B—H1B⋯O42 0.82 1.96 2.779 (3) 176
N2A—H2A⋯O32 0.86 2.24 2.968 (3) 142
N2B—H2B⋯O31 0.86 2.31 3.005 (3) 138
N2B—H2B⋯O22i 0.86 2.34 2.992 (3) 133
N1A—H11A⋯O22ii 0.86 2.50 3.211 (3) 141
N1A—H11A⋯O32 0.86 2.58 3.231 (3) 133
N1B—H11B⋯O31 0.86 2.32 3.000 (3) 136
N1B—H11B⋯O41iii 0.86 2.54 3.268 (3) 143
N1A—H12A⋯O2Bii 0.86 2.19 2.928 (3) 144
N1B—H12B⋯O2Aiii 0.86 2.22 2.971 (3) 145
C4A—H4A⋯O11iv 0.93 2.57 3.312 (3) 137
C4B—H4B⋯O32v 0.93 2.53 3.433 (3) 165
C5A—H5A⋯O11vi 0.93 2.37 3.277 (3) 164
C5B—H5B⋯O12vii 0.93 2.52 3.450 (3) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

We are grateful to the LCATM laboratory, Université d’Oum El Bouaghi, Algeria, for financial support.

supplementary crystallographic information

Comment

As a continuation of the systematic studies on synthesis and structural characterization of the products of derivatives of nicotinic acid with inorganic acids, and as an attempt to establish a relationship between the nature of the anion and the resulting hydrogen-bonding pattern, we report here the crystal structure of the title compound obtained by reaction between 2-aminonicotinic and perchloric acids. Related compounds obtained with dihydrogen phosphate, sulfate and nitrate anions, have been reported previously (Akriche & Rzaigui 2007; Berrah et al. 2011a,b).

The dimers of 2-aminonicotinium cations are formed via N—H···O h-bonds (NH of the amine group with the O of the carboxylic group). Similar dimers have been also observed in the structures with dihydrogen phosphate and sulfate anions (Akriche & Rzaigui 2007; Berrah et al. 2011a), while cations in the nitrate structure adopt a different configuration (Berrah et al. 2011b).

In the crystal structure, cationic and anionic layers alternate along the c axis and are linked by intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (see table 1) resulting in a two-dimensional network parallel to (100) (Fig.2). Further C—H···O contacts connect these layers, forming a three-dimensional network in which R44(20) rings and C22(11) infinite chains are generated (Etter et al. 1990; Grell et al. 1999).

Experimental

Colourless crystals of compound (I) were grown by slow evaporation of an aquoes solution of 2-amino-pyridine-3-carboxylic acid and perchloric acid in an 1:1 stoichiometric ratio.

Refinement

All H atoms were located in a difference Fourier maps but introduced at calculated positions and treated as riding on their parent atoms (C,N or O) with C—H = 0.93 Å,N—H = 0.88 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

asymmetric unit of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

A view parallel to (010) showing cationic and anionic layers alternation along the c axis. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

A view of the two-dimensional network showing how dimers are stacked within cationic layers. Hydrogen bonds are shown as dashed lines.

Crystal data

C6H7N2O2+·ClO4 F(000) = 976
Mr = 238.59 Dx = 1.74 Mg m3
Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 3823 reflections
a = 17.3573 (12) Å θ = 2.5–27.4°
b = 5.0800 (4) Å µ = 0.43 mm1
c = 21.6293 (17) Å T = 150 K
β = 107.239 (2)° Stick, colourless
V = 1821.5 (2) Å3 0.48 × 0.17 × 0.08 mm
Z = 8

Data collection

Bruker APEXII diffractometer 3305 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
CCD rotation images, thin slices scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −22→12
Tmin = 0.847, Tmax = 0.966 k = −6→6
13822 measured reflections l = −27→28
4142 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0377P)2 + 1.7007P] where P = (Fo2 + 2Fc2)/3
4142 reflections (Δ/σ)max < 0.001
273 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 0.12456 (3) −0.07231 (11) −0.11690 (3) 0.01685 (14)
Cl1 0.37576 (3) 0.54151 (11) 0.35382 (3) 0.01875 (14)
O22 0.19785 (10) −0.2141 (4) −0.11310 (8) 0.0251 (4)
O1B 0.07544 (11) 0.1702 (4) 0.02704 (8) 0.0275 (4)
H1B 0.0786 0.0731 −0.0024 0.041*
O42 0.09107 (12) −0.1755 (4) −0.06809 (9) 0.0330 (5)
O21 0.42254 (13) 0.6540 (4) 0.31530 (9) 0.0369 (5)
O31 0.35147 (11) 0.2777 (3) 0.33137 (9) 0.0300 (4)
O41 0.30450 (11) 0.6993 (4) 0.34659 (8) 0.0264 (4)
O2B 0.18407 (11) −0.0563 (4) 0.08267 (8) 0.0282 (4)
O32 0.14319 (11) 0.2034 (3) −0.10376 (9) 0.0269 (4)
O2A 0.31277 (11) 0.5865 (4) 0.15454 (8) 0.0287 (4)
O11 0.42313 (11) 0.5324 (4) 0.42050 (8) 0.0269 (4)
O1A 0.42090 (11) 0.3499 (4) 0.20638 (8) 0.0323 (5)
H1A 0.4172 0.4352 0.2376 0.049*
O12 0.06824 (11) −0.1019 (4) −0.17999 (8) 0.0274 (4)
N2A 0.31083 (12) 0.1811 (4) −0.01596 (9) 0.0189 (4)
H2A 0.2759 0.2114 −0.0528 0.023*
N2B 0.18027 (12) 0.3604 (4) 0.24939 (9) 0.0198 (4)
H2B 0.2137 0.3306 0.2869 0.024*
C3B 0.18684 (14) 0.2122 (4) 0.19911 (11) 0.0165 (5)
N1B 0.24371 (13) 0.0283 (4) 0.21094 (9) 0.0225 (5)
H11B 0.2751 0.0061 0.2496 0.027*
H12B 0.2492 −0.0685 0.1799 0.027*
C2B 0.13013 (14) 0.2659 (4) 0.13757 (11) 0.0156 (5)
C2A 0.36459 (14) 0.2707 (5) 0.09571 (11) 0.0166 (5)
N1A 0.24775 (12) 0.5022 (4) 0.02580 (9) 0.0204 (4)
H11A 0.2145 0.5237 −0.0122 0.025*
H12A 0.2432 0.5962 0.0576 0.025*
C3A 0.30586 (14) 0.3245 (4) 0.03538 (11) 0.0160 (5)
C5A 0.42317 (15) −0.0621 (5) 0.04338 (12) 0.0239 (5)
H5A 0.4618 −0.1915 0.0457 0.029*
C6A 0.42192 (15) 0.0799 (5) 0.09851 (12) 0.0213 (5)
H6A 0.4605 0.0447 0.1378 0.026*
C4A 0.36681 (15) −0.0065 (5) −0.01335 (12) 0.0223 (5)
H4A 0.3666 −0.0978 −0.0507 0.027*
C6B 0.07394 (14) 0.4623 (5) 0.13287 (11) 0.0200 (5)
H6B 0.0373 0.4991 0.0927 0.024*
C1A 0.36249 (15) 0.4192 (5) 0.15434 (11) 0.0199 (5)
C1B 0.13334 (15) 0.1106 (5) 0.08066 (11) 0.0183 (5)
C4B 0.12476 (15) 0.5518 (5) 0.24461 (12) 0.0229 (5)
H4B 0.1238 0.6456 0.2813 0.027*
C5B 0.07058 (15) 0.6081 (5) 0.18698 (12) 0.0222 (5)
H5B 0.0322 0.7396 0.1833 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0180 (3) 0.0159 (3) 0.0166 (3) 0.0000 (2) 0.0052 (2) −0.0011 (2)
Cl1 0.0213 (3) 0.0159 (3) 0.0199 (3) −0.0054 (2) 0.0074 (2) −0.0038 (2)
O22 0.0216 (9) 0.0260 (10) 0.0251 (9) 0.0067 (7) 0.0028 (7) −0.0018 (7)
O1B 0.0229 (10) 0.0384 (11) 0.0194 (9) 0.0070 (8) 0.0036 (7) −0.0085 (8)
O42 0.0463 (12) 0.0321 (11) 0.0289 (10) −0.0153 (9) 0.0242 (9) −0.0079 (8)
O21 0.0472 (13) 0.0380 (12) 0.0356 (11) −0.0184 (10) 0.0275 (10) −0.0084 (9)
O31 0.0327 (11) 0.0164 (9) 0.0365 (11) −0.0060 (8) 0.0034 (9) −0.0079 (8)
O41 0.0268 (10) 0.0233 (9) 0.0271 (9) 0.0037 (8) 0.0050 (8) −0.0032 (8)
O2B 0.0348 (11) 0.0259 (10) 0.0228 (9) 0.0121 (8) 0.0067 (8) −0.0040 (8)
O32 0.0322 (11) 0.0143 (9) 0.0295 (10) 0.0002 (7) 0.0019 (8) −0.0008 (7)
O2A 0.0334 (11) 0.0286 (10) 0.0225 (9) 0.0122 (8) 0.0058 (8) −0.0031 (8)
O11 0.0237 (10) 0.0305 (10) 0.0227 (9) −0.0036 (8) 0.0013 (7) −0.0032 (8)
O1A 0.0249 (10) 0.0511 (13) 0.0176 (9) 0.0117 (9) 0.0010 (8) −0.0044 (9)
O12 0.0232 (9) 0.0331 (11) 0.0214 (9) 0.0054 (8) −0.0005 (7) −0.0064 (8)
N2A 0.0215 (11) 0.0188 (10) 0.0156 (9) 0.0020 (8) 0.0044 (8) 0.0008 (8)
N2B 0.0230 (11) 0.0192 (10) 0.0165 (9) −0.0029 (8) 0.0047 (8) −0.0026 (8)
C3B 0.0185 (12) 0.0137 (11) 0.0182 (11) −0.0045 (9) 0.0071 (9) −0.0022 (9)
N1B 0.0279 (12) 0.0187 (10) 0.0182 (10) 0.0048 (9) 0.0024 (8) −0.0005 (8)
C2B 0.0167 (12) 0.0127 (10) 0.0186 (11) −0.0040 (9) 0.0071 (9) −0.0013 (9)
C2A 0.0149 (12) 0.0162 (11) 0.0190 (11) −0.0007 (9) 0.0055 (9) 0.0020 (9)
N1A 0.0227 (11) 0.0177 (10) 0.0178 (9) 0.0073 (8) 0.0012 (8) −0.0002 (8)
C3A 0.0177 (12) 0.0125 (10) 0.0186 (11) −0.0025 (9) 0.0067 (9) 0.0012 (9)
C5A 0.0213 (13) 0.0204 (12) 0.0326 (13) 0.0071 (10) 0.0120 (11) 0.0006 (11)
C6A 0.0187 (12) 0.0225 (12) 0.0222 (12) 0.0015 (10) 0.0050 (10) 0.0044 (10)
C4A 0.0267 (13) 0.0174 (12) 0.0260 (12) 0.0003 (10) 0.0127 (10) −0.0035 (10)
C6B 0.0179 (12) 0.0187 (12) 0.0230 (11) −0.0025 (10) 0.0053 (9) −0.0005 (10)
C1A 0.0219 (13) 0.0201 (12) 0.0176 (11) −0.0015 (10) 0.0056 (10) 0.0014 (9)
C1B 0.0201 (12) 0.0169 (12) 0.0183 (11) −0.0018 (10) 0.0062 (9) −0.0009 (9)
C4B 0.0279 (14) 0.0193 (12) 0.0251 (12) −0.0043 (11) 0.0135 (10) −0.0075 (10)
C5B 0.0213 (13) 0.0174 (12) 0.0302 (13) 0.0012 (10) 0.0112 (11) −0.0047 (10)

Geometric parameters (Å, º)

Cl2—O12 1.4316 (17) C3B—C2B 1.428 (3)
Cl2—O22 1.4427 (18) N1B—H11B 0.86
Cl2—O42 1.4463 (18) N1B—H12B 0.86
Cl2—O32 1.4466 (18) C2B—C6B 1.378 (3)
Cl1—O11 1.4336 (17) C2B—C1B 1.477 (3)
Cl1—O21 1.4427 (19) C2A—C6A 1.378 (3)
Cl1—O41 1.4430 (18) C2A—C3A 1.424 (3)
Cl1—O31 1.4451 (18) C2A—C1A 1.485 (3)
O1B—C1B 1.325 (3) N1A—C3A 1.324 (3)
O1B—H1B 0.82 N1A—H11A 0.86
O2B—C1B 1.214 (3) N1A—H12A 0.86
O2A—C1A 1.212 (3) C5A—C4A 1.353 (3)
O1A—C1A 1.320 (3) C5A—C6A 1.399 (3)
O1A—H1A 0.82 C5A—H5A 0.93
N2A—C4A 1.350 (3) C6A—H6A 0.93
N2A—C3A 1.352 (3) C4A—H4A 0.93
N2A—H2A 0.86 C6B—C5B 1.401 (3)
N2B—C4B 1.351 (3) C6B—H6B 0.93
N2B—C3B 1.355 (3) C4B—C5B 1.351 (3)
N2B—H2B 0.86 C4B—H4B 0.93
C3B—N1B 1.328 (3) C5B—H5B 0.93
O12—Cl2—O22 110.08 (10) C3A—C2A—C1A 119.5 (2)
O12—Cl2—O42 110.43 (12) C3A—N1A—H11A 120
O22—Cl2—O42 108.41 (12) C3A—N1A—H12A 120
O12—Cl2—O32 109.81 (11) H11A—N1A—H12A 120
O22—Cl2—O32 109.27 (11) N1A—C3A—N2A 118.0 (2)
O42—Cl2—O32 108.81 (11) N1A—C3A—C2A 125.4 (2)
O11—Cl1—O21 109.92 (11) N2A—C3A—C2A 116.5 (2)
O11—Cl1—O41 110.16 (11) C4A—C5A—C6A 118.4 (2)
O21—Cl1—O41 109.17 (12) C4A—C5A—H5A 120.8
O11—Cl1—O31 109.34 (11) C6A—C5A—H5A 120.8
O21—Cl1—O31 109.36 (12) C2A—C6A—C5A 121.2 (2)
O41—Cl1—O31 108.87 (11) C2A—C6A—H6A 119.4
C1B—O1B—H1B 109.5 C5A—C6A—H6A 119.4
C1A—O1A—H1A 109.5 N2A—C4A—C5A 120.2 (2)
C4A—N2A—C3A 124.5 (2) N2A—C4A—H4A 119.9
C4A—N2A—H2A 117.8 C5A—C4A—H4A 119.9
C3A—N2A—H2A 117.8 C2B—C6B—C5B 121.7 (2)
C4B—N2B—C3B 124.5 (2) C2B—C6B—H6B 119.2
C4B—N2B—H2B 117.8 C5B—C6B—H6B 119.2
C3B—N2B—H2B 117.8 O2A—C1A—O1A 123.5 (2)
N1B—C3B—N2B 118.1 (2) O2A—C1A—C2A 123.8 (2)
N1B—C3B—C2B 125.6 (2) O1A—C1A—C2A 112.7 (2)
N2B—C3B—C2B 116.3 (2) O2B—C1B—O1B 123.0 (2)
C3B—N1B—H11B 120 O2B—C1B—C2B 123.3 (2)
C3B—N1B—H12B 120 O1B—C1B—C2B 113.6 (2)
H11B—N1B—H12B 120 C5B—C4B—N2B 120.6 (2)
C6B—C2B—C3B 119.0 (2) C5B—C4B—H4B 119.7
C6B—C2B—C1B 121.7 (2) N2B—C4B—H4B 119.7
C3B—C2B—C1B 119.3 (2) C4B—C5B—C6B 118.0 (2)
C6A—C2A—C3A 119.1 (2) C4B—C5B—H5B 121
C6A—C2A—C1A 121.3 (2) C6B—C5B—H5B 121
C4B—N2B—C3B—N1B −179.2 (2) C3A—N2A—C4A—C5A −0.1 (4)
C4B—N2B—C3B—C2B −0.3 (3) C6A—C5A—C4A—N2A −0.3 (4)
N1B—C3B—C2B—C6B 179.4 (2) C3B—C2B—C6B—C5B −0.7 (4)
N2B—C3B—C2B—C6B 0.7 (3) C1B—C2B—C6B—C5B 179.5 (2)
N1B—C3B—C2B—C1B −0.8 (4) C6A—C2A—C1A—O2A −179.1 (2)
N2B—C3B—C2B—C1B −179.6 (2) C3A—C2A—C1A—O2A 0.4 (4)
C4A—N2A—C3A—N1A −180.0 (2) C6A—C2A—C1A—O1A 1.1 (3)
C4A—N2A—C3A—C2A 0.2 (3) C3A—C2A—C1A—O1A −179.4 (2)
C6A—C2A—C3A—N1A −179.8 (2) C6B—C2B—C1B—O2B 176.9 (2)
C1A—C2A—C3A—N1A 0.7 (4) C3B—C2B—C1B—O2B −2.8 (4)
C6A—C2A—C3A—N2A 0.0 (3) C6B—C2B—C1B—O1B −3.2 (3)
C1A—C2A—C3A—N2A −179.6 (2) C3B—C2B—C1B—O1B 177.1 (2)
C3A—C2A—C6A—C5A −0.3 (4) C3B—N2B—C4B—C5B 0.0 (4)
C1A—C2A—C6A—C5A 179.2 (2) N2B—C4B—C5B—C6B 0.0 (4)
C4A—C5A—C6A—C2A 0.5 (4) C2B—C6B—C5B—C4B 0.4 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O21 0.82 1.99 2.810 (3) 173
O1B—H1B···O42 0.82 1.96 2.779 (3) 176
N2A—H2A···O32 0.86 2.24 2.968 (3) 142
N2A—H2A···O41i 0.86 2.41 3.004 (3) 126
N2B—H2B···O31 0.86 2.31 3.005 (3) 138
N2B—H2B···O41 0.86 2.54 3.057 (3) 120
N2B—H2B···O22ii 0.86 2.34 2.992 (3) 133
N1A—H11A···O22iii 0.86 2.50 3.211 (3) 141
N1A—H11A···O32 0.86 2.58 3.231 (3) 133
N1B—H11B···O31 0.86 2.32 3.000 (3) 136
N1B—H11B···O41iv 0.86 2.54 3.268 (3) 143
N1A—H12A···O2A 0.86 2.09 2.711 (3) 129
N1A—H12A···O2Biii 0.86 2.19 2.928 (3) 144
N1B—H12B···O2Aiv 0.86 2.22 2.971 (3) 145
N1B—H12B···O2B 0.86 2.07 2.693 (3) 128
C4A—H4A···O11v 0.93 2.57 3.312 (3) 137
C4B—H4B···O32vi 0.93 2.53 3.433 (3) 165
C5A—H5A···O11vii 0.93 2.37 3.277 (3) 164
C5B—H5B···O12viii 0.93 2.52 3.450 (3) 177
C6A—H6A···O1A 0.93 2.38 2.711 (3) 100
C6B—H6B···O1B 0.93 2.41 2.735 (3) 100

Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y, z+1/2; (iii) x, y+1, z; (iv) x, y−1, z; (v) x, −y, z−1/2; (vi) x, −y+1, z+1/2; (vii) −x+1, y−1, −z+1/2; (viii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2056).

References

  1. Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.
  2. Bendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574–o576.
  3. Berrah, F., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o2057–o2058. [DOI] [PMC free article] [PubMed]
  4. Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953–o954. [DOI] [PMC free article] [PubMed]
  5. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  7. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043. [DOI] [PubMed]
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018922/ld2056sup1.cif

e-68-o1601-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018922/ld2056Isup2.hkl

e-68-o1601-Isup2.hkl (198.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018922/ld2056Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES